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Chapter 1: Finite Markov Chains

1.1 Definitions and Examples

• Consider a discrete time stochastic process X
n
, n = 0,1,2,…, with state 

space S = {1,…,N} (or {0,…,N−1})

• Definition:

– A time-homogeneous Markov chain is a process such that 

for some function p : S × S → [0,1]. Matrix P = (p(i,j); i,j = 1,…,N) is called 
the transition matrix of the Markov chain.

• Notes:

– Given an initial distribution φ(i) = P{X
0
= i}, we have

– Transition matrix P is a stochastic matrix, i.e. 

– Any stochastic matrix is the transition matrix for some Markov chain
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Chapter 1: Finite Markov Chains

1.1 Definitions and Examples

• Definition:

– Define the (conditional) n-step probabilities p
n
(i,j) by

• Proposition: 

– Chapman-Kolmogorov equation:

• Idea of the proof:

– By conditioning at time m

• Corollary:

– p
n
(i,j) is the (i,j)-entry in the matrix Pn, 
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Chapter 1: Finite Markov Chains

1.1 Definitions and Examples

• Definition:

– Given an initial distribution φ, the unconditional n-step probabilities are 

• Note:

– The same in the matrix form:
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1.2 Long-Range Behaviour and Invariant Probability

• Definition:

– A probability vector π is called an invariant distribution for P if

• Notes:

– The system of linear equations given above for the determination of π are 

called Global Balance Equations (GBE):

– Requiring that π is a probability vector (= distribution) is the so called 

Normalizing Condition (N):
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1.2 Long-Range Behaviour and Invariant Probability

• Proposition:

– Starting with an invariant distribution π as the initial distribution φ, we have, 

for all n, 

• Note:

– In fact, the chain is then stationary with stationary distribution π
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1.2 Long-Range Behaviour and Invariant Probability

• Proposition: 

– Suppose π is a limiting distribution, i.e. for some initial distribution φ, we 
have 

– Then it is also an invariant distribution, 
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1.3 Classification of States

• Definition:

– Two states i and j communicate (i ↔ j) if there exist m and n such that 

p
m
(i,j) > 0 and p

n
(j,i) > 0

• Notes:

– Relation ↔ is an equivalence relation. 

– Equivalence classes are called communication classes

• Definition:

– Markov chain is called irreducible if there is only one communication class



9

Chapter 1: Finite Markov Chains

1.3 Classification of States

• Definition:

– Communication class C is recurrent if and only if for all i ∈ C, 

and transient if and only if for some i ∈ C,   

• Notes:

– A transient class is eventually left, but a recurrent class never

– If there is only one class (i.e. the chain is irreducible), it must be recurrent
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1.3 Classification of States

• Proposition:

– Assume that P
R

is the part of P related to a recurrent class P.

– If there is n such that (P
R
)n has all entries strictly positive, then there is a 

distribution π
R

defined on R such that π
R
(i) > 0 for all i ∈ R and 

• Notes:

– As a limit, π
R

is unique

– As a limiting ditribution, π
R

is invariant with respect to P
R

– For any initial distribution φ
R

defined on R, 

– There cannot be any other invariant distributions

• Proposition:

– Assume that P
T

is the part of P related to a transient class. Then
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1.3 Classification of States

• Definition:

– Consider an irreducible Markov chain. The period d(i) of state i is the 
greatest common divisor of the set

• Proposition:

– All the states of an irreducible Markov chain have the same period d ≡ d(i)

• Definition:

– An irreducible Markov chain is called aperiodic if d = 1

• Notes:

– A self-transition (even a single one) makes an irreducible chain aperiodic

– However, there are also aperiodic chains without any self-transitions 

– A pairwise-transition (p(i,j) > 0 and p(j,i) > 0) implies that d ≤ 2: 

– An irreducible Markov chain is aperiodic if and only if there is n such that Pn

has all entries strictly positive
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1.3 Classification of States

• Theorem:

– An irreducible aperiodic Markov chain has a unique invariant distribution π

– If φ is any initial distribution, then 

– Moreover, for each i, 

• Notes:

– For any initial probability vector φ and any state j ∈ S: 

– For any i,j ∈ S: 
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1.3 Classification of States

• Theorem:

– An irreducible periodic Markov chain with period d has a unique invariant 

distribution π

– If φ is any initial  distribution, then

does not exist, but  

– Moreover, for each i, 

• Idea of the proof:

– Use the previous result by defining a new, aperiodic chain as follows:

where δ(i,j) = 1 if i = j and 0 otherwise. The same invariant distribution!
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1.3 Classification of States

• Theorem:

– Consider a Markov chain with recurrent, aperiodic classes R
1
,…,R

r
and 

transient classes T
1
,…,T

s
. Let πk denote the unique invariant distribution of 

class R
k
. 

– Then any linear combination (with weights summing to 1) of πks is an 
invariant distribution for the chain

• Idea of the proof:

– Use block matrices to verify the result
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1.3 Classification of States

• Theorem:

– Consider a Markov chain with recurrent, aperiodic classes R
1
,…,R

r
and 

transient classes T
1
,…,T

s
. Let πk denote the unique invariant distribution of 

class R
k
. Let α

k
(i) denote the probability that the chain starting in a state i

eventually ends up in the recurrent class R
k
.

– Then, for any state i ∈ S and j ∈ R
k
,

• Notes:

– For any recurrent state i ∈ R
k
, we have α

k
(i) = 1

– If φ is an initial distribution, then 

exists but depends on φ so that for any state j ∈ R
k
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1.4 Return Times

• Let X
n
be an irreducible Markov chain with invariant distribution π

– Assume that X
0
= i and denote the first time after 0 that the Markov chain is 

in state i by T, 

• Proposition:

• Idea of the proof:

– By a renewal argument applying Blackwell.s Theorem. Consecutive visits to 

state i constitute a renewal process in discrete time.
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1.4 Return Times

• Renewal theory in discrete time

– Interarrival times T
n

i.i.d. with period d

– Define 

• Elementary Renewal Theorem:

• Blackwell’s Theorem:

• Corollary:
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1.5 Transient States

• Consider a Markov chain X
n
with recurrent classes R

1
,…,R

r
and 

transient classes T
1
,…,T

s

– Denote the part of the transition matrix P that relates to the transient states 

by Q, and reorder the states so that 

– Matrix I − Q is invertible and we may define the matrix 

– Let i be a transient state and denote the total number of visits to i by Y
i
, 
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1.5 Transient States

• Proposition: 

– For any transient states i,j, we have 

• Proof: 
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1.5 Transient States

• Let X
n
be an irreducible Markov chain with transition matrix P

– Assume that X
0
= j and denote the first time after 0 that the Markov chain is 

in state i by T
i
, 

– Without loss of generality, we may assume that i = 1, 

• Consider then the modified Markov chain with transition matrix 

– Now i is an absorbing state and all the other states are transient

– Let 
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1.5 Transient States

• Proposition: 

– For any j ≠ i, we have 

• Proof: 

– For any k ≠ i, denote the total number of visits to k by Y
k
, 

– Now 

– Thus, by the previous proposition, 
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1.5 Transient States

• Consider a Markov chain X
n
with absorbing states r

1
,…,r

k
and 

transient states t
1
,…,t

s

– By a suitable reordering of the states, the transition matrix P is as follows:

– As before, let 

– Let α(ti,rj) denote the probability that the chain starting at ti eventually ends 

up in recurrent state rj, 

– Define an s × k matrix by A = (α(ti,rj); i = 1,…,s, j = 1,…,k)
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1.5 Transient States

• Proposition:

– For any i,j, we have 

• Proof:

– Clearly

– The same in the matrix form:
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The End of Chapter 1


