

Lawler (1995) Chapter 1 Finite Markov Chains

- 1.1 Definitions and Examples
- 1.2 Long-Range Behaviour and Invariant Probability
- 1.3 Classification of States
- 1.4 Return Times
- 1.5 Transient States

(1.6 Examples)

ch1.ppt

S-38.215 – Applied Stochastic Processes – Spring 2004

1

Chapter 1: Finite Markov Chains

1.1 Definitions and Examples

- Consider a discrete time stochastic process X_n, n = 0,1,2,..., with state space S = {1,...,N} (or {0,...,N-1})
- Definition:
 - A time-homogeneous Markov chain is a process such that

 $P\{X_n = i_n \mid X_0 = i_0, \dots, X_{n-1} = i_{n-1}\} = P\{X_n = i_n \mid X_{n-1} = i_{n-1}\} = p(i_{n-1}, i_n)$

for some function $p: S \times S \rightarrow [0,1]$. Matrix P = (p(i,j); i,j = 1,...,N) is called the **transition matrix** of the Markov chain.

- Notes:
 - Given an initial distribution $\phi(i) = P\{X_0 = i\}$, we have

$$P\{X_0 = i_0, \dots, X_n = i_n\} = \phi(i_0) p(i_0, i_1) \cdots p(i_{n-1}, i_n)$$
(1.3)

- Transition matrix P is a stochastic matrix, i.e.

$$0 \le p(i,j) \le 1, \forall i,j$$
 $\sum_{j=1}^{N} p(i,j) = 1, \forall i$

- Any stochastic matrix is the transition matrix for some Markov chain

1.1 Definitions and Examples

• Definition:

- Define the (conditional) *n*-step probabilities $p_n(i,j)$ by

$$p_n(i, j) = P\{X_n = j \mid X_0 = i\} = P\{X_{n+k} = j \mid X_k = i\}$$

- Proposition:
 - Chapman-Kolmogorov equation:

$$p_{m+n}(i,j) = \sum_{k \in S} p_m(i,k) p_n(k,j)$$

- Idea of the proof:
 - By conditioning at time *m*
- Corollary:
 - $p_n(i,j)$ is the (i,j)-entry in the matrix P^n ,

$$p_n(i,j) = [P^n](i,j)$$

Chapter 1: Finite Markov Chains

1.1 Definitions and Examples

- Definition:
 - Given an initial distribution ϕ , the unconditional *n*-step probabilities are

$$\phi_n(j) = P\{X_n = j\} = \sum_{i \in S} \phi(i) p_n(i, j)$$

Note:

- The same in the matrix form:

$$\overline{\phi}_n = \overline{\phi}P^n$$

1.2 Long-Range Behaviour and Invariant Probability

- Definition:
 - A probability vector π is called an **invariant distribution** for *P* if

 $\overline{\pi} = \overline{\pi}P$

- Notes:
 - The system of linear equations given above for the determination of π are called **Global Balance Equations** (GBE):

$$\pi(y) = \sum_{x \in S} \pi(x) p(x, y), \quad y \in S$$
 (GBE)

 Requiring that π is a probability vector (= distribution) is the so called Normalizing Condition (N):

$$\sum_{x \in S} \pi(x) = 1 \tag{N}$$

1.2 Long-Range Behaviour and Invariant Probability

- Proposition:
 - Starting with an invariant distribution π as the initial distribution ϕ , we have, for all *n*,

$$\overline{\phi}_n = \overline{\pi} P^n = (\overline{\pi} P) P^{n-1} = \overline{\pi} P^{n-1} = \dots = \overline{\pi}$$

- Note:
 - In fact, the chain is then stationary with stationary distribution π

1.2 Long-Range Behaviour and Invariant Probability

• Proposition:

– Suppose π is a **limiting distribution**, i.e. for some initial distribution ϕ , we have

$$\overline{\pi} = \lim_{n \to \infty} \overline{\phi} P^n$$

- Then it is also an invariant distribution,

$$\overline{\pi} = \lim_{n \to \infty} \overline{\phi} P^{n+1} = (\lim_{n \to \infty} \overline{\phi} P^n) P = \overline{\pi} P$$

Chapter 1: Finite Markov Chains

1.3 Classification of States

- Definition:
 - Two states *i* and *j* communicate $(i \leftrightarrow j)$ if there exist *m* and *n* such that $p_m(i,j) > 0$ and $p_n(j,i) > 0$
- Notes:
 - Relation \leftrightarrow is an equivalence relation.
 - Equivalence classes are called communication classes
- Definition:
 - Markov chain is called irreducible if there is only one communication class

- Definition:
 - Communication class *C* is **recurrent** if and only if for all $i \in C$,

$$\sum_{j \in C} p(i, j) = 1$$

and **transient** if and only if for some $i \in C$,

$$\sum_{j \in C} p(i, j) < 1$$

- Notes:
 - A transient class is eventually left, but a recurrent class never
 - If there is only one class (i.e. the chain is irreducible), it must be recurrent

Chapter 1: Finite Markov Chains

1.3 Classification of States

- Proposition:
 - Assume that P_R is the part of P related to a recurrent class P.
 - If there is *n* such that $(P_R)^n$ has all entries strictly positive, then there is a distribution π_R defined on *R* such that $\pi_R(i) > 0$ for all $i \in R$ and

$$\lim_{n \to \infty} (P_R)^n = \overline{1}\overline{\pi}_R$$

- Notes:
 - As a limit, π_R is unique
 - As a limiting ditribution, π_R is invariant with respect to P_R
 - For any initial distribution ϕ_R defined on R,

$$\lim_{n \to \infty} \overline{\phi}_R (P_R)^n = \overline{\phi}_R \overline{1} \overline{\pi}_R = \overline{\pi}_R$$

- There cannot be any other invariant distributions
- Proposition:
 - Assume that P_T is the part of P related to a transient class. Then

$$\lim_{n \to \infty} (P_T)^n = 0$$

- Definition:
 - Consider an irreducible Markov chain. The period d(i) of state i is the greatest common divisor of the set

$$J_i = \{n \ge 0 \mid p_n(i,i) > 0\}$$

- Proposition:
 - All the states of an irreducible Markov chain have the same period $d \equiv d(i)$
- Definition:
 - An irreducible Markov chain is called **aperiodic** if d = 1
- Notes:
 - A self-transition (even a single one) makes an irreducible chain aperiodic
 - However, there are also aperiodic chains without any self-transitions
 - A pairwise-transition (p(i,j) > 0 and p(j,i) > 0) implies that $d \le 2$:

$$p_2(i,i) \ge p(i,j)p(j,i) > 0$$

- An irreducible Markov chain is aperiodic if and only if there is n such that P^n has all entries strictly positive

11

Chapter 1: Finite Markov Chains

1.3 Classification of States

- Theorem:
 - An irreducible **aperiodic** Markov chain has a unique invariant distribution π
 - If ϕ is any initial distribution, then

$$\lim_{n \to \infty} \overline{\phi} P^n = \overline{\pi}$$

- Moreover, for each i,

 $\pi(i) > 0$

- Notes:
 - For any initial probability vector ϕ and any state $j \in S$:

$$\lim_{n \to \infty} \phi_n(j) = \pi(j)$$

- For any $i, j \in S$:

 $\lim_{n \to \infty} p_n(i, j) = \pi(j)$

- Theorem:
 - An irreducible **periodic** Markov chain with period *d* has a unique invariant distribution π
 - If ϕ is any initial distribution, then

$$\lim_{n \to \infty} \overline{\phi} P^n$$

does not exist, but

$$\lim_{\to\infty} \frac{1}{d} (\bar{\phi} P^{n+1} + \dots + \bar{\phi} P^{n+d}) = \bar{\pi}$$

- Moreover, for each i,

 $\pi(i) > 0$

- Idea of the proof:
 - Use the previous result by defining a new, aperiodic chain as follows:

$$\hat{p}(i,j) = \frac{1}{2}(\delta(i,j) + p(i,j))$$

where $\delta(i,j) = 1$ if i = j and 0 otherwise. The same invariant distribution!

13

Chapter 1: Finite Markov Chains

1.3 Classification of States

- Theorem:
 - Consider a Markov chain with recurrent, aperiodic classes R_1, \ldots, R_r and transient classes T_1, \ldots, T_s . Let π^k denote the unique invariant distribution of class R_k .
 - Then any linear combination (with weights summing to 1) of π^k s is an invariant distribution for the chain
- Idea of the proof:
 - Use block matrices to verify the result

- Theorem:
 - Consider a Markov chain with recurrent, aperiodic classes R_1, \ldots, R_r and transient classes T_1, \ldots, T_s . Let π^k denote the unique invariant distribution of class R_k . Let $\alpha_k(i)$ denote the probability that the chain starting in a state *i* eventually ends up in the recurrent class R_k .
 - Then, for any state $i \in S$ and $j \in R_k$,

$$\lim_{n \to \infty} p_n(i, j) = \alpha_k(i) \pi^k(j)$$

- Notes:
 - For any recurrent state $i \in R_k$, we have $\alpha_k(i) = 1$
 - If ϕ is an initial distribution, then

$$\lim_{n \to \infty} \overline{\phi} P^n$$

exists but depends on ϕ so that for any state $j \in R_k$

$$\lim_{n \to \infty} \phi_n(j) = \sum_{i \in S} \phi(i) \alpha_k(i) \pi^k(j)$$

15

Chapter 1: Finite Markov Chains

1.4 Return Times

- Let X_n be an irreducible Markov chain with invariant distribution π
 - Assume that $X_0 = i$ and denote the first time after 0 that the Markov chain is in state *i* by *T*,

$$T = \min\{n \ge 1 \mid X_n = i\}$$

• Proposition:

$$E[T] = \frac{1}{\pi(i)} < \infty$$

- Idea of the proof:
 - By a renewal argument applying Blackwell.s Theorem. Consecutive visits to state *i* constitute a renewal process in discrete time.

1.4 Return Times

Renewal theory in discrete time

- Interarrival times T_n i.i.d. with period d

$$d = \max\{k \ge 1 \mid \sum_{n=1}^{\infty} P\{T = nk\} = 1\}$$

- Define

$$I_n = I\{\text{arrival at time } n\}$$

• Elementary Renewal Theorem:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P\{I_m = 1\} = \frac{1}{E[T]}$$

• Blackwell's Theorem:

$$\lim_{R \to \infty} P\{I_{nd} = 1\} = \frac{d}{E[T]}$$

• Corollary:

$$\lim_{m \to \infty} \frac{1}{d} \sum_{m=1}^{d} P\{I_{n+m} = 1\} = \frac{1}{E[T]}$$

7
1
'

Chapter 1: Finite Markov Chains

1.5 Transient States

- Consider a Markov chain X_n with recurrent classes R₁,...,R_r and transient classes T₁,...,T_s
 - Denote the part of the transition matrix *P* that relates to the transient states by *Q*, and reorder the states so that

$$P = \begin{bmatrix} \widetilde{P} & 0 \\ S & Q \end{bmatrix}$$

- Matrix I - Q is invertible and we may define the matrix

$$M = (I - Q)^{-1} = I + Q + Q^{2} + \dots$$

- Let *i* be a transient state and denote the total number of visits to *i* by Y_{i} ,

$$Y_i = \sum_{n=0}^{\infty} I\{X_n = i\}$$

1.5 Transient States

- Proposition:
 - For any transient states *i*,*j*, we have

 $E[Y_i | X_0 = j] = [M](j,i)$

• Proof:

$$E[Y_i | X_0 = j] = E[\sum_{n=0}^{\infty} I\{X_n = i\} | X_0 = j]$$

= $\sum_{n=0}^{\infty} P\{X_n = i | X_0 = j\}$
= $\sum_{n=0}^{\infty} p_n(j,i)$
= $\left[\sum_{n=0}^{\infty} P^n\right](j,i)$
= $\left[\sum_{n=0}^{\infty} Q^n\right](j,i)$
= $\left[(I-Q)^{-1}\right](j,i)$
= $[M](j,i)$

19

Chapter 1: Finite Markov Chains

1.5 Transient States

- Let X_n be an irreducible Markov chain with transition matrix P
 - Assume that $X_0 = j$ and denote the first time after 0 that the Markov chain is in state *i* by T_j ,

$$T_i = \min\{n \ge 1 \mid X_n = i\}$$

- Without loss of generality, we may assume that i = 1,

$$P = \begin{bmatrix} p(i,i) & R \\ S & Q \end{bmatrix}$$

Consider then the modified Markov chain with transition matrix

$$\widetilde{P} = \begin{bmatrix} 1 & 0 \\ S & Q \end{bmatrix}$$

- Now *i* is an absorbing state and all the other states are transient

Let

$$M = (I - Q)^{-}$$

1.5 Transient States

- *Proposition*:
 - For any $j \neq i$, we have

$$E[T_i \mid X_0 = j] = \sum_{k \neq i} [M](j,k) < \infty$$

Proof:

- For any $k \neq i$, denote the total number of visits to k by \widetilde{Y}_k ,

$$\widetilde{Y}_k = \sum_{n=0}^{\infty} I\{\widetilde{X}_n = k\}$$

- Now

$$T_i = \sum_{k \neq i} \widetilde{Y}_k$$

Thus, by the previous proposition,

$$E[T_i \mid X_0 = j] = E[\sum_{k \neq i} \widetilde{Y}_k \mid \widetilde{X}_0 = j]$$
$$= \sum_{k \neq i} [M](j,k)$$

2	1

Chapter 1: Finite Markov Chains

1.5 Transient States

- Consider a Markov chain X_n with absorbing states $r_1, ..., r_k$ and transient states $t_1, ..., t_s$
 - By a suitable reordering of the states, the transition matrix P is as follows:

$$P = \begin{bmatrix} I & 0 \\ S & Q \end{bmatrix}$$

- As before, let

$$M = (I - Q)^{-1}$$

- Let $\alpha(t_i, r_j)$ denote the probability that the chain starting at t_i eventually ends up in recurrent state r_i ,

$$\alpha(t_i, r_j) = P\{\lim_{n \to \infty} X_n = r_j \mid X_0 = t_i\}$$

- Define an $s \times k$ matrix by $A = (\alpha(t_i, r_j); i = 1, ..., s, j = 1, ..., k)$

1.5 Transient States

- Proposition:
 - For any *i*,*j*, we have

 $\alpha(t_i, r_j) = [MS](i, j)$

• Proof:

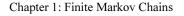
- Clearly

$$\alpha(t_i, r_j) = p(t_i, r_j) + \sum_{k=1}^{s} p(t_i, t_k) \alpha(t_k, r_j)$$

- The same in the matrix form:

$$A = S + QA \implies (I - Q)A = S \implies A = (I - Q)^{-1}S = MS$$

	2
4	3



The End of Chapter 1

