
1.1 Definitions and Examples
1.2 Long-Range Behaviour and Invariant Probability
1.3 Classification of States
1.4 Return Times
1.5 Transient States
(1.6 Examples)
ch1.ppt
S-38.215 - Applied Stochastic Processes - Spring 2004

Chapter 1: Finite Markov Chains

1.1 Definitions and Examples

- Consider a discrete time stochastic process $X_{n}, n=0,1,2, \ldots$, with state space $S=\{1, \ldots, N\}$ (or $\{0, \ldots, N-1\}$)
- Definition:
- A time-homogeneous Markov chain is a process such that

$$
P\left\{X_{n}=i_{n} \mid X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}\right\}=P\left\{X_{n}=i_{n} \mid X_{n-1}=i_{n-1}\right\}=p\left(i_{n-1}, i_{n}\right)
$$

for some function $p: S \times S \rightarrow[0,1]$. Matrix $P=(p(i, j) ; i, j=1, \ldots, N)$ is called the transition matrix of the Markov chain.

- Notes:
- Given an initial distribution $\phi(i)=\mathrm{P}\left\{X_{0}=i\right\}$, we have

$$
\begin{equation*}
P\left\{X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right\}=\phi\left(i_{0}\right) p\left(i_{0}, i_{1}\right) \cdots p\left(i_{n-1}, i_{n}\right) \tag{1.3}
\end{equation*}
$$

- Transition matrix P is a stochastic matrix, i.e.

$$
0 \leq p(i, j) \leq 1, \forall i, j \quad \sum_{j=1}^{N} p(i, j)=1, \forall i
$$

- Any stochastic matrix is the transition matrix for some Markov chain

1.1 Definitions and Examples

- Definition:
- Define the (conditional) \boldsymbol{n}-step probabilities $p_{n}(i, j)$ by

$$
p_{n}(i, j)=P\left\{X_{n}=j \mid X_{0}=i\right\}=P\left\{X_{n+k}=j \mid X_{k}=i\right\}
$$

- Proposition:
- Chapman-Kolmogorov equation:

$$
p_{m+n}(i, j)=\sum_{k \in S} p_{m}(i, k) p_{n}(k, j)
$$

- Idea of the proof:
- By conditioning at time m
- Corollary:
- $p_{n}(i, j)$ is the (i, j)-entry in the matrix P^{n},

$$
p_{n}(i, j)=\left[P^{n}\right](i, j)
$$

Chapter 1: Finite Markov Chains

1.1 Definitions and Examples

- Definition:
- Given an initial distribution ϕ, the unconditional n-step probabilities are

$$
\phi_{n}(j)=P\left\{X_{n}=j\right\}=\sum_{i \in S} \phi(i) p_{n}(i, j)
$$

- Note:
- The same in the matrix form:

$$
\bar{\phi}_{n}=\bar{\phi} P^{n}
$$

1.2 Long-Range Behaviour and Invariant Probability

- Definition:
- A probability vector π is called an invariant distribution for P if

$$
\bar{\pi}=\bar{\pi} P
$$

- Notes:
- The system of linear equations given above for the determination of π are called Global Balance Equations (GBE):

$$
\begin{equation*}
\pi(y)=\sum_{x \in S} \pi(x) p(x, y), \quad y \in S \tag{GBE}
\end{equation*}
$$

- Requiring that π is a probability vector (= distribution) is the so called Normalizing Condition (N):

$$
\begin{equation*}
\sum_{x \in S} \pi(x)=1 \tag{N}
\end{equation*}
$$

Chapter 1: Finite Markov Chains

1.2 Long-Range Behaviour and Invariant Probability

- Proposition:
- Starting with an invariant distribution π as the initial distribution ϕ, we have, for all n,

$$
\bar{\phi}_{n}=\bar{\pi} P^{n}=(\bar{\pi} P) P^{n-1}=\bar{\pi} P^{n-1}=\cdots=\bar{\pi}
$$

- Note:
- In fact, the chain is then stationary with stationary distribution π

1.2 Long-Range Behaviour and Invariant Probability

- Proposition:
- Suppose π is a limiting distribution, i.e. for some initial distribution ϕ, we have

$$
\bar{\pi}=\lim _{n \rightarrow \infty} \bar{\phi} P^{n}
$$

- Then it is also an invariant distribution,

$$
\bar{\pi}=\lim _{n \rightarrow \infty} \bar{\phi} P^{n+1}=\left(\lim _{n \rightarrow \infty} \bar{\phi} P^{n}\right) P=\bar{\pi} P
$$

1.3 Classification of States

- Definition:
- Two states i and j communicate $(i \leftrightarrow j)$ if there exist m and n such that $p_{m}(i, j)>0$ and $p_{n}(j, i)>0$
- Notes:
- Relation \leftrightarrow is an equivalence relation.
- Equivalence classes are called communication classes
- Definition:
- Markov chain is called irreducible if there is only one communication class

1.3 Classification of States

- Definition:
- Communication class C is recurrent if and only if for all $i \in C$,

$$
\sum_{j \in C} p(i, j)=1
$$

and transient if and only if for some $i \in C$,

$$
\sum_{j \in C} p(i, j)<1
$$

- Notes:
- A transient class is eventually left, but a recurrent class never
- If there is only one class (i.e. the chain is irreducible), it must be recurrent

Chapter 1: Finite Markov Chains

1.3 Classification of States

- Proposition:
- Assume that P_{R} is the part of P related to a recurrent class P.
- If there is n such that $\left(P_{R}\right)^{n}$ has all entries strictly positive, then there is a distribution π_{R} defined on R such that $\pi_{R}(i)>0$ for all $i \in R$ and

$$
\lim _{n \rightarrow \infty}\left(P_{R}\right)^{n}=\overline{1} \bar{\pi}_{R}
$$

- Notes:
- As a limit, π_{R} is unique
- As a limiting ditribution, π_{R} is invariant with respect to P_{R}
- For any initial distribution ϕ_{R} defined on R,

$$
\lim _{n \rightarrow \infty} \bar{\phi}_{R}\left(P_{R}\right)^{n}=\bar{\phi}_{R} \overline{1} \bar{\pi}_{R}=\bar{\pi}_{R}
$$

- There cannot be any other invariant distributions
- Proposition:
- Assume that P_{T} is the part of P related to a transient class. Then

$$
\lim _{n \rightarrow \infty}\left(P_{T}\right)^{n}=0
$$

1.3 Classification of States

- Definition:
- Consider an irreducible Markov chain. The period $d(i)$ of state i is the greatest common divisor of the set

$$
J_{i}=\left\{n \geq 0 \mid p_{n}(i, i)>0\right\}
$$

- Proposition:
- All the states of an irreducible Markov chain have the same period $d \equiv d(i)$
- Definition:
- An irreducible Markov chain is called aperiodic if $d=1$
- Notes:
- A self-transition (even a single one) makes an irreducible chain aperiodic
- However, there are also aperiodic chains without any self-transitions
- A pairwise-transition $(p(i, j)>0$ and $p(j, i)>0)$ implies that $d \leq 2$:

$$
p_{2}(i, i) \geq p(i, j) p(j, i)>0
$$

- An irreducible Markov chain is aperiodic if and only if there is n such that P^{n} has all entries strictly positive

Chapter 1: Finite Markov Chains

1.3 Classification of States

- Theorem:
- An irreducible aperiodic Markov chain has a unique invariant distribution π
- If ϕ is any initial distribution, then

$$
\lim _{n \rightarrow \infty} \bar{\phi} P^{n}=\bar{\pi}
$$

- Moreover, for each i,

$$
\pi(i)>0
$$

- Notes:
- For any initial probability vector ϕ and any state $j \in S$:

$$
\lim _{n \rightarrow \infty} \phi_{n}(j)=\pi(j)
$$

- For any $i, j \in S$:

$$
\lim _{n \rightarrow \infty} p_{n}(i, j)=\pi(j)
$$

1.3 Classification of States

- Theorem:
- An irreducible periodic Markov chain with period d has a unique invariant distribution π
- If ϕ is any initial distribution, then

$$
\lim _{n \rightarrow \infty} \bar{\phi} P^{n}
$$

does not exist, but

$$
\lim _{n \rightarrow \infty} \frac{1}{d}\left(\bar{\phi} P^{n+1}+\cdots+\bar{\phi} P^{n+d}\right)=\bar{\pi}
$$

- Moreover, for each i,

$$
\pi(i)>0
$$

- Idea of the proof:
- Use the previous result by defining a new, aperiodic chain as follows:

$$
\hat{p}(i, j)=\frac{1}{2}(\delta(i, j)+p(i, j))
$$

where $\delta(i, j)=1$ if $i=j$ and 0 otherwise. The same invariant distribution!

Chapter 1: Finite Markov Chains

1.3 Classification of States

- Theorem:
- Consider a Markov chain with recurrent, aperiodic classes R_{1}, \ldots, R_{r} and transient classes T_{1}, \ldots, T_{S}. Let π^{k} denote the unique invariant distribution of class R_{k}.
- Then any linear combination (with weights summing to 1) of $\pi^{k} \mathrm{~s}$ is an invariant distribution for the chain
- Idea of the proof:
- Use block matrices to verify the result

1.3 Classification of States

- Theorem:
- Consider a Markov chain with recurrent, aperiodic classes R_{1}, \ldots, R_{r} and transient classes T_{1}, \ldots, T_{S}. Let π^{k} denote the unique invariant distribution of class R_{k}. Let $\alpha_{k}(i)$ denote the probability that the chain starting in a state i eventually ends up in the recurrent class R_{k}.
- Then, for any state $i \in S$ and $j \in R_{k}$,

$$
\lim _{n \rightarrow \infty} p_{n}(i, j)=\alpha_{k}(i) \pi^{k}(j)
$$

- Notes:
- For any recurrent state $i \in R_{k}$, we have $\alpha_{k}(i)=1$
- If ϕ is an initial distribution, then

$$
\lim _{n \rightarrow \infty} \bar{\phi} P^{n}
$$

exists but depends on ϕ so that for any state $j \in R_{k}$

$$
\lim _{n \rightarrow \infty} \phi_{n}(j)=\sum_{i \in S} \phi(i) \alpha_{k}(i) \pi^{k}(j)
$$

Chapter 1: Finite Markov Chains

1.4 Return Times

- Let X_{n} be an irreducible Markov chain with invariant distribution π
- Assume that $X_{0}=i$ and denote the first time after 0 that the Markov chain is in state i by T,

$$
T=\min \left\{n \geq 1 \mid X_{n}=i\right\}
$$

- Proposition:

$$
E[T]=\frac{1}{\pi(i)}<\infty
$$

- Idea of the proof:
- By a renewal argument applying Blackwell.s Theorem. Consecutive visits to state i constitute a renewal process in discrete time.

1.4 Return Times

- Renewal theory in discrete time
- Interarrival times T_{n} i.i.d. with period d

$$
d=\max \left\{k \geq 1 \mid \sum_{n=1}^{\infty} P\{T=n k\}=1\right\}
$$

- Define

$$
I_{n}=I\{\text { arrival at time } n\}
$$

- Elementary Renewal Theorem:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} P\left\{I_{m}=1\right\}=\frac{1}{E[T]}
$$

- Blackwell's Theorem:

$$
\lim _{n \rightarrow \infty} P\left\{I_{n d}=1\right\}=\frac{d}{E[T]}
$$

- Corollary:

$$
\lim _{n \rightarrow \infty} \frac{1}{d} \sum_{m=1}^{d} P\left\{I_{n+m}=1\right\}=\frac{1}{E[T]}
$$

Chapter 1: Finite Markov Chains

1.5 Transient States

- Consider a Markov chain X_{n} with recurrent classes R_{1}, \ldots, R_{r} and transient classes T_{1}, \ldots, T_{S}
- Denote the part of the transition matrix P that relates to the transient states by Q, and reorder the states so that

$$
P=\left[\begin{array}{ll}
\widetilde{P} & 0 \\
S & Q
\end{array}\right]
$$

- Matrix $I-Q$ is invertible and we may define the matrix

$$
M=(I-Q)^{-1}=I+Q+Q^{2}+\ldots
$$

- Let i be a transient state and denote the total number of visits to i by Y_{i},

$$
Y_{i}=\sum_{n=0}^{\infty} I\left\{X_{n}=i\right\}
$$

1.5 Transient States

- Proposition:
- For any transient states i, j, we have

$$
E\left[Y_{i} \mid X_{0}=j\right]=[M](j, i)
$$

- Proof:

$$
\begin{aligned}
E\left[Y_{i} \mid X_{0}=j\right] & =E\left[\sum_{n=0}^{\infty} I\left\{X_{n}=i\right\} \mid X_{0}=j\right] \\
& =\sum_{n=0}^{\infty} P\left\{X_{n}=i \mid X_{0}=j\right\} \\
& =\sum_{n=0}^{\infty} p_{n}(j, i) \\
& =\left[\sum_{n=0}^{\infty} P^{n}\right](j, i) \\
& =\left[\sum_{n=0}^{\infty} Q^{n}\right](j, i) \\
& =\left[(I-Q)^{-1}\right](j, i) \\
& =[M](j, i)
\end{aligned}
$$

Chapter 1: Finite Markov Chains

1.5 Transient States

- Let X_{n} be an irreducible Markov chain with transition matrix P
- Assume that $X_{0}=j$ and denote the first time after 0 that the Markov chain is in state i by T_{i},

$$
T_{i}=\min \left\{n \geq 1 \mid X_{n}=i\right\}
$$

- Without loss of generality, we may assume that $i=1$,

$$
P=\left[\begin{array}{cc}
p(i, i) & R \\
S & Q
\end{array}\right]
$$

- Consider then the modified Markov chain with transition matrix

$$
\widetilde{P}=\left[\begin{array}{ll}
1 & 0 \\
S & Q
\end{array}\right]
$$

- Now i is an absorbing state and all the other states are transient
- Let

$$
M=(I-Q)^{-1}
$$

1.5 Transient States

- Proposition:
- For any $j \neq i$, we have

$$
E\left[T_{i} \mid X_{0}=j\right]=\sum_{k \neq i}[M](j, k)<\infty
$$

- Proof:
- For any $k \neq i$, denote the total number of visits to k by \tilde{Y}_{k},

$$
\widetilde{Y}_{k}=\sum_{n=0}^{\infty} I\left\{\widetilde{X}_{n}=k\right\}
$$

- Now

$$
T_{i}=\sum_{k \neq i} \widetilde{Y}_{k}
$$

- Thus, by the previous proposition,

$$
\begin{aligned}
E\left[T_{i} \mid X_{0}=j\right] & =E\left[\sum_{k \neq i} \widetilde{Y}_{k} \mid \widetilde{X}_{0}=j\right] \\
& =\sum_{k \neq i}[M](j, k)
\end{aligned}
$$

Chapter 1: Finite Markov Chains

1.5 Transient States

- Consider a Markov chain X_{n} with absorbing states r_{1}, \ldots, r_{k} and transient states t_{1}, \ldots, t_{s}
- By a suitable reordering of the states, the transition matrix P is as follows:

$$
P=\left[\begin{array}{ll}
I & 0 \\
S & Q
\end{array}\right]
$$

- As before, let

$$
M=(I-Q)^{-1}
$$

- Let $\alpha\left(t_{i}, r_{j}\right)$ denote the probability that the chain starting at t_{i} eventually ends up in recurrent state r_{j},

$$
\alpha\left(t_{i}, r_{j}\right)=P\left\{\lim _{n \rightarrow \infty} X_{n}=r_{j} \mid X_{0}=t_{i}\right\}
$$

- Define an $s \times k$ matrix by $A=\left(\alpha\left(t_{i}, r_{j}\right) ; i=1, \ldots, s, j=1, \ldots, k\right)$

1.5 Transient States

- Proposition:
- For any i, j, we have

$$
\alpha\left(t_{i}, r_{j}\right)=[M S](i, j)
$$

- Proof:
- Clearly

$$
\alpha\left(t_{i}, r_{j}\right)=p\left(t_{i}, r_{j}\right)+\sum_{k=1}^{S} p\left(t_{i}, t_{k}\right) \alpha\left(t_{k}, r_{j}\right)
$$

- The same in the matrix form:

$$
A=S+Q A \Rightarrow(I-Q) A=S \Rightarrow A=(I-Q)^{-1} S=M S
$$

