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Chapter 1: Finite Markov Chains

1.1 Definitions and Examples

+ Consider a discrete time stochastic process X, n =0,1,2,..., with state
space S = {1,....N} (or {0,....N—1})
» Definition:
— A time-homogeneous Markov chain is a process such that

P{Xn =Ip |X0 :iO’-“aXn—l :in—l} :P{Xn =1y |Xn—l :in—l}:p(in—lain)

for some function p : S x § — [0,1]. Matrix P = (p(iy); i,j = 1,...,N) is called
the transition matrix of the Markov chain.

* Notes:
— Given an initial distribution ¢(i) = P{X, = i}, we have

P{Xo=1ip,....Xp =1y} = ¢lio) plig, i)~ p(in—1,in) (1.3)
— Transition matrix P is a stochastic matrix, i.e.

0<p, )<L Visj XN pGj)=1, Vi

— Any stochastic matrix is the transition matrix for some Markov chain




Chapter 1: Finite Markov Chains

1.1 Definitions and Examples

»  Definition:
— Define the (conditional) n-step probabilities p, (i,/) by

pn(iaj):P{Xn:j|X0:i}:P{Xn+k:j|Xk:i}

* Proposition:
— Chapman-Kolmogorov equation:

pm-l—l’l(i,j) = ZkeSpm(lak)pn(ka])

Idea of the proof.
— By conditioning at time m
Corollary:
- p, (i) is the (i,j)-entry in the matrix P”,

pn(i, ))=[P"1(, j)
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1.1 Definitions and Examples

» Definition:

— Given an initial distribution ¢, the unconditional n-step probabilities are
G () = PAXy = j} = 2ies P P (s )

« Note:
— The same in the matrix form:

(3n=5pn
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1.2 Long-Range Behaviour and Invariant Probability

»  Definition:
— A probability vector 7 is called an invariant distribution for P if

7T =7nP

 Notes:

— The system of linear equations given above for the determination of zare
called Global Balance Equations (GBE):

7(¥) =2 es®(X)p(x,y), yeS (GBE)

— Requiring that 7 is a probability vector (= distribution) is the so called
Normalizing Condition (N):

erSﬂ-(x) =1 (N)
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1.2 Long-Range Behaviour and Invariant Probability

* Proposition:

— Starting with an invariant distribution 7z as the initial distribution ¢, we have,
for all n,

* Note:
— In fact, the chain is then stationary with stationary distribution 7
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1.2 Long-Range Behaviour and Invariant Probability

* Proposition:

— Suppose 7 is a limiting distribution, i.e. for some initial distribution ¢, we
have

7= lim ¢P"
n—»0
— Then it is also an invariant distribution,
7= lim gP" = (lim #P")P=7P
n—>00 n—»0
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1.3 Classification of States

» Definition:
— Two states i and j communicate (i <> j) if there exist m and » such that
P(iy)>0andp, (,i) >0
* Notes:
— Relation <> is an equivalence relation.
— Equivalence classes are called communication classes
» Definition:
— Markov chain is called irreducible if there is only one communication class




Chapter 1: Finite Markov Chains

1.3 Classification of States

»  Definition:

— Communication class C is recurrent if and only if for all i € C,
Zjecp(i,j) =1
and transient if and only if for some i € C,

* Notes:
— A transient class is eventually left, but a recurrent class never
— If there is only one class (i.e. the chain is irreducible), it must be recurrent
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1.3 Classification of States

* Proposition:
— Assume that Pp is the part of P related to a recurrent class P.
— If there is n such that (PR)” has all entries strictly positive, then there is a
distribution 7z defined on R such that (/) > 0 for all i € R and

lim (Pg )n = TfR
N—>00
* Notes:

— As a limit, TR is unique
— As alimiting ditribution, 7, is invariant with respect to Pp
— For any initial distribution ¢R defined on R,
lim gp(PR)" =gplrg =7g

n—>00

— There cannot be any other invariant distributions
* Proposition:

— Assume that Py is the part of P related to a transient class. Then

lim (Pr)" =0

n—»o0
10
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1.3 Classification of States

» Definition:
— Consider an irreducible Markov chain. The period d(i) of state i is the
greatest common divisor of the set

Ji ={n20] p,(i,i)> 0}

* Proposition:

— All the states of an irreducible Markov chain have the same period d = d(7)
»  Definition:

— An irreducible Markov chain is called aperiodic if d = 1

* Notes:
— A self-transition (even a single one) makes an irreducible chain aperiodic
— However, there are also aperiodic chains without any self-transitions

— A pairwise-transition (p(i,j) > 0 and p(j,i) > 0) implies that d < 2:
p2(,0) 2 p(i, ))p(j,i) >0

— Anirreducible Markov chain is aperiodic if and only if there is 7 such that P”
has all entries strictly positive
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1.3 Classification of States

» Theorem:
— Anirreducible aperiodic Markov chain has a unique invariant distribution 7
— If ¢is any initial distribution, then
lim ¢P"
n—>0

T

— Moreover, for each i,

7(i)>0

* Notes:
— For any initial probability vector ¢ and any state j € S:

lim ¢,(j)=7z())
n—>0

— Foranyijes:

lim p, (i, j)=7(j)
n—>0
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1.3 Classification of States

» Theorem:

— Anirreducible periodic Markov chain with period d has a unique invariant
distribution 7z

— If ¢gis any initial distribution, then
lim gP"
n—>0
does not exist, but

lim %(gZPnH +otrgP o 7
n—>00
— Moreover, for each i,

7(i)>0

* Idea of the proof.
— Use the previous result by defining a new, aperiodic chain as follows:

PG, j) =5 (86, )+ pGs )

where &i,j) = 1 if i =j and 0 otherwise. The same invariant distribution!
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1.3 Classification of States

» Theorem:

— Consider a Markov chain with recurrent, aperiodic classes Ry,...,R, and
transient classes Tl,...,TS. Let 7Z‘k denote the unique invariant distribution of
class R;.

— Then any linear combination (with weights summing to 1) of s is an
invariant distribution for the chain

» Idea of the proof:
— Use block matrices to verify the result
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1.3 Classification of States

» Theorem:

— Consider a Markov chain with recurrent, aperiodic classes Ry,...,R, and
transient classes Tl,...,TS. Let ﬂk denote the unique invariant distribution of
class R;. Let (i) denote the probability that the chain starting in a state
eventually ends up in the recurrent class R;.

— Then, for any state i € Sand; € Ry,

lim p,G, /)= ()7* ()
Nn—>0

* Notes:
— For any recurrent state i € R;, we have o (i) = 1
— If ¢is an initial distribution, then
lim gP"
n—»00
exists but depends on ¢ so that for any state j € R,

lim ¢, (/) = Yjes D7 ()

n—»0

15

Chapter 1: Finite Markov Chains

1.4 Return Times

« Let Xn be an irreducible Markov chain with invariant distribution 7

— Assume that XO = { and denote the first time after 0 that the Markov chain is
in state i by T,

T'=min{n2>1| X, =i}
* Proposition:

1
E[T]=——<w
7 (i)
* Idea of the proof.
— By a renewal argument applying Blackwell.s Theorem. Consecutive visits to
state i constitute a renewal process in discrete time.
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1.4 Return Times

Renewal theory in discrete time

— Interarrival times 7, i.i.d. with period d
d =max{k>1|>% | P{T = nk} =1}
— Define

I, = I{arrival at time n}

Elementary Renewal Theorem:

S R a7 1
nlinoonzm:lP{Im =1l = (T

Blackwell’s Theorem:

lim P{,; =1t=-9_
oo 4T HIT]

Corollary:
P20 7]
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1.5 Transient States

+ Consider a Markov chain X, with recurrent classes Ry,...,R, and
transient classes 77,...,T;

— Denote the part of the transition matrix P that relates to the transient states
by O, and reorder the states so that

P o
P=
s 0
— Matrix I — Q is invertible and we may define the matrix

M=I-0)"'=1+0+0%+...

— Let i be a transient state and denote the total number of visits to i by Y,

Y = Z;OZOI{Xn =1}

18
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1.5 Transient States

Proposition:

— For any transient states i,j, we have

ElY; | Xo = j1=[M](j,)

Proof:
E[Y; | Xo = j1=E[X, o I{X, =1} Xo = j]
:Z;O:()P{Xn =i|Xo=J}
= Z(;,O:o Pn (_j, i)
= Zf:OP”:j,i)

= Xm0 Q" [1:0)

=l7-07 i)
— [M]1(ji.i)
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1.5 Transient States

Let Xn be an irreducible Markov chain with transition matrix P

— Assume that X = j and denote the first time after 0 that the Markov chain is

in state i by Ti=
T =mm{n=1|X,, =i}

— Without loss of generality, we may assume thati =1,

P {p(i,i) R}
s 0

Consider then the modified Markov chain with transition matrix

~ |1 0
P =
S 0
— Now i is an absorbing state and all the other states are transient

— Let

M=1-0)"

20




Chapter 1: Finite Markov Chains

1.5 Transient States

* Proposition:

— Foranyj =i, we have
E[T; | Xo = j1= 24 [M1(j,h) <0

*  Proof:

— Forany k = i, denote the total number of visits to & by IN’k,
Ve =Yoo X, =k}
— Now
I = Zk;ﬁz’?k
— Thus, by the previous proposition,
E[T;| Xo = j1= E[X i ¥ | Xo = J]
=D kil M1(j, k)
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1.5 Transient States

» Consider a Markov chain Xn with absorbing states r,...,r; and
transient states 71,....7

— By a suitable reordering of the states, the transition matrix P is as follows:
I 0
P=
S 0

M=I-0)"

— As before, let

— Let a(tl-,rj) denote the probability that the chain starting at 7; eventually ends
up in recurrent state '

a(tl‘,l"j)ZP{ lim Xn =71 | XO Zti}
Nn—>0

— Define an s x k matrix by 4 = (a(ti,rj); i=1,...57=1,...,k)
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1.5 Transient States

* Proposition:

— Foranyij, we have
at;,r) =[MS1(. )

*  Proof:
— Clearly

a(ty,r;)=plt;,r;)+ 2p_ Pt ety r))
— The same in the matrix form:

A=S+04 = ([-Q)A=S = A=(I-0)'S=Ms
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The End of Chapter 1
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