Lawler (1995) Chapter 2
 Countable Markov Chains

2.1 Introduction
2.2 Recurrence and Transience
2.3 Positive Recurrence and Null Recurrence
(2.4 Branching Process)
ch2.ppt
S-38.215 - Applied Stochastic Processes - Spring 2004
1

Chapter 2: Countable Markov Chains

2.1 Introduction

- Consider a time-homogeneous Markov chain $X_{n}, n=0,1,2, \ldots$, with a countably infinite state space S
- Examples: $S=\{0,1, \ldots\}, S=Z=\{\ldots,-1,0,1, \ldots\}, S=Z^{2}$
- Notes:
- Markov-property the same as before:

$$
\begin{aligned}
& P\left\{X_{n}=x_{n} \mid X_{0}=x_{0}, \ldots, X_{n-1}=x_{n-1}\right\} \\
& =P\left\{X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right\}=p\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

- Transition matrix $P=(p(x, y) ; x, y \in S)$ is an infinite matrix.
- Given an initial distribution $\phi(x)=\mathrm{P}\left\{X_{0}=x\right\}$, we have

$$
P\left\{X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right\}=\phi\left(x_{0}\right) p\left(x_{0}, x_{1}\right) \cdots p\left(x_{n-1}, x_{n}\right)
$$

- Chapman-Kolmogorov equation for the n-step probabilities proved as before

$$
p_{m+n}(x, y)=\sum_{z \in S} p_{m}(x, z) p_{n}(z, y)
$$

- Communication classes (and, thus, irreducibility) defined as before

2.2 Recurrence and Transience

- Consider an irreducible Markov chain X_{n} with countably infinite state space S
- Definition:
- Markov chain X_{n} is a recurrent chain if, for each state x,

$$
P\left\{X_{n}=x \text { for infinitely many } n\right\}=1
$$

- Otherwise Markov chain X_{n} is called a transient chain.
- Notes:
- Recurrence and transience are still properties for whole classes
- Every state of a transient Markov chain is, in fact, visited only a finite number of times (with probability 1)
- With a finite state space, an irreducible Markov chain is always recurrent, but with a countably infinite state space, it may be transient or recurrent

Chapter 2: Countable Markov Chains

2.2 Recurrence and Transience

- Consider a Markov chain X_{n} with countably infinite state space S
- Fix state x and assume that $X_{0}=x$.
- Let T denote the time for the first return to state x :

$$
T=\min \left\{n \geq 1 \mid X_{n}=x\right\}
$$

- Furthermore, let R denote the total number of visits to state x :

$$
R=\sum_{n=0}^{\infty} I\left\{X_{n}=x\right\}
$$

- Notes:
- The following are the same events:

$$
\left\{X_{n}=x \text { for infinitely many } n\right\}=\{R=\infty\}
$$

- The expectation of R is as follows:

$$
E[R]=\sum_{n=0}^{\infty} P\left\{X_{n}=x\right\}=\sum_{n=0}^{\infty} p_{n}(x, x)
$$

2.2 Recurrence and Transience

- Alternative definition:
- State x is recurrent if

$$
P\{T<\infty\}=1
$$

- Otherwise, state x is transient, i.e.

$$
P\{T=\infty\}>0
$$

- Proposition:

$$
P\{R=k\}=P\{T<\infty\}^{k-1} P\{T=\infty\}
$$

- Proposition:

$$
P\{T<\infty\}=1 \Leftrightarrow \mathrm{P}\{\mathrm{R}=\infty\}=1 \Leftrightarrow \mathrm{E}[\mathrm{R}]=\infty
$$

- Proposition:

$$
P\{T=\infty\}>0 \quad \Leftrightarrow \quad \mathrm{P}\{\mathrm{R}<\infty\}=1 \quad \Leftrightarrow \mathrm{E}[\mathrm{R}]<\infty
$$

Chapter 2: Countable Markov Chains

2.2 Recurrence and Transience

- Proposition:
- The states of a communication class are either all recurrent or all transient
- Proposition:
- Consider a communication class C.
- If for some $x \in C$

$$
\sum_{y \in C} p(x, y)<1
$$

then class C is transient.

- Note:
- In the case of an infinite state space, this is only a sufficient but not necessary condition
- Equivalent claim: if class C is recurrent, then for all $x \in C$

$$
\sum_{y \in C} p(x, y)=1
$$

2.2 Recurrence and Transience

- Proposition:
- Consider an irreducible Markov chain. Fix state z, and, for each state x, let

$$
\alpha(x)=P\left\{X_{n}=z \text { for some } n \geq 0 \mid X_{0}=x\right\}
$$

- The chain is transient if and only if $\alpha(x)$ satifies the following:

$$
\begin{align*}
& 0 \leq \alpha(x) \leq 1 \tag{2.1}\\
& \alpha(z)=1, \quad \inf \{\alpha(x) \mid x \in S\}=0 \tag{2.2}\\
& \alpha(x)=\sum_{y \in S} p(x, y) \alpha(y), \quad x \neq z \tag{2.3}
\end{align*}
$$

- Notes:
- Equations (2.1) and (2.3) together with the first part of (2.2) are clear.
- So the beef is in the second part of (2.2)

Chapter 2: Countable Markov Chains

2.3 Positive Recurrence and Null Recurrence

- Consider an irreducible, aperiodic Markov chain X_{n} with a countably infinite state space S
- If the state space were finite, the chain would be recurrent with a unique invariant/limiting/stationary distribution
- However, in the case of a countably infinite state space, the chain may be - positive recurrent,
- null recurrent, or
- transient
- Only in the first case the chain has an invariant distibution (being the unique limiting distribution at the same time and leading to a stationary system when used as the initial distribution)
- In the latter two cases, no invariant/limiting/stationary distribution exists

2.3 Positive Recurrence and Null Recurrence

- Proposition:
- If an irreducible Markov chain is transient, then, for all x, y,

$$
\lim _{n \rightarrow \infty} p_{n}(x, y)=0
$$

- Definition:
- A recurrent state x is null recurrent if

$$
\lim _{n \rightarrow \infty} p_{n}(x, x)=0
$$

- Otherwise it is called positive recurrent.
- Proposition:
- The states of a recurrent communication class are either all null recurrent or all positive recurrent.
- Proposition:
- If an irreducible Markov chain is null recurrent, then, for all x, y,

$$
\lim _{n \rightarrow \infty} p_{n}(x, y)=0
$$

Chapter 2: Countable Markov Chains

2.3 Positive Recurrence and Null Recurrence

- Theorem:
- Consider an irreducible, aperiodic and positive recurrent Markov chain.
- It has a unique limiting distribution such that,for all x, y,

$$
\lim _{n \rightarrow \infty} p_{n}(x, y)=\pi(y)>0
$$

- The limiting distribution π is the unique invariant distribution for the chain, i.e. it satisfies the global balance equations (GBE) together with the normalizing condition (N):

$$
\begin{equation*}
\pi(y)=\sum_{x \in S} \pi(x) p(x, y), \quad y \in S \tag{GBE}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{x \in S} \pi(x)=1 \tag{N}
\end{equation*}
$$

- Starting with π makes the chain stationary.
- Note:
- If the chain is irreducible and positive recurrent but periodic, there is still a unique invariant/stationary distribution, but no limiting distribution

2.3 Positive Recurrence and Null Recurrence

- Proposition:
- Let X_{n} be an irreducible, aperiodic Markov chain. Assume that $X_{0}=x$ and let T denote the time for the first return to state x.
- If X_{n} is positively recurrent, then

$$
E[T]=\frac{1}{\pi(i)}<\infty
$$

- If X_{n} is null recurrent or transient, then

$$
E[T]=\infty
$$

- Idea of the proof:
- By a renewal argument applying Blackwell's Theorem. Consecutive visits to state i constitute a renewal process in discrete time.
- Note:
- One way to determine whether or not a chain is positively recurrent is to try to find an invariant distribution, i.e. solve global balance equations (GBE) and take into account the normalizing condition (N)

