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Chapter 2: Countable Markov Chains

2.1 Introduction

+ Consider a time-homogeneous Markov chain X, , n=0,1,2,..., with a
countably infinite state space §

— Examples: S={0,1,...}, S=Z={...-1,0,1,...}, S= 72
* Notes:
Markov-property the same as before:
P{Xy = x| X0 =X0,0., Xpp—1 = X1}
= P{Xy, =x, | Xy =x5-1} = p(xy-1,%)

Transition matrix P = (p(x,y); x,y € S) is an infinite matrix.

Given an initial distribution ¢(x) = P{X, = x}, we have

P{X( =x0,..-, Xy = x5} = P(x0) p(x05 %) P(Xpp—1,Xp)

Chapman-Kolmogorov equation for the n-step probabilities proved as before

Pman(6) =2 o Pm(%,2) Pp(2,¥)

— Communication classes (and, thus, irreducibility) defined as before
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2.2 Recurrence and Transience

+ Consider an irreducible Markov chain X, with countably infinite state
space S
» Definition:
— Markov chain Xn is a recurrent chain if, for each state x,

P{X,, = x for infinitely many n} =1

— Otherwise Markov chain Xn is called a transient chain.

* Notes:
— Recurrence and transience are still properties for whole classes
— Every state of a transient Markov chain is, in fact, visited only a finite
number of times (with probability 1)

— With a finite state space, an irreducible Markov chain is always recurrent,
but with a countably infinite state space, it may be transient or recurrent
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2.2 Recurrence and Transience

+ Consider a Markov chain X, with countably infinite state space S
— Fix state x and assume that XO =X.
— Let T denote the time for the first return to state x:

T'=min{n=1| X,, =x}
— Furthermore, let R denote the total number of visits to state x:
o0

* Notes:
— The following are the same events:

{X,, = x for infinitely many »n} = {R = o}
— The expectation of R is as follows:

E[R]= Z(;ZO:()P{Xn =x}= Zfzopn(xax)




Chapter 2: Countable Markov Chains

2.2 Recurrence and Transience

* Alternative definition:
— State x is recurrent if

P{T <o} =1
— Otherwise, state x is transient, i.e.
P{T =0}>0
* Proposition:
P{R=k}=P{T <o}* 1 P{T =0}
* Proposition:
P{T<x}=1 & P{R=w}=1 < E[R]=w
* Proposition:

P{T=w}>0 < P{R<w!=1 < E[R]<wo
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2.2 Recurrence and Transience

* Proposition:

— The states of a communication class are either all recurrent or all transient
* Proposition:

— Consider a communication class C.

— Ifforsomex e C

Zyecp(xay) <1

then class C is transient.
* Note:

— In the case of an infinite state space, this is only a sufficient but not
necessary condition

— Equivalent claim: if class C is recurrent, then forall x € C

Zyecp(x’y) =1
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2.2 Recurrence and Transience

* Proposition:

— Consider an irreducible Markov chain. Fix state z, and, for each state x, let

a(x)=P{X, =z forsome n=0| Xy =x}

— The chain is transient if and only if a(x) satifies the following:

0<a(x)<l (2.1)
a(z)=1, inf{a(x)|xeS}=0 (2.2)
a(x) =2 es PO, Y)(Y), x#2z (2.3)

* Notes:
— Equations (2.1) and (2.3) together with the first part of (2.2) are clear.
— So the beef is in the second part of (2.2)
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2.3 Positive Recurrence and Null Recurrence

+ Consider an irreducible, aperiodic Markov chain X,, with a countably
infinite state space S

— If the state space were finite, the chain would be recurrent with a unique
invariant/limiting/stationary distribution

— However, in the case of a countably infinite state space, the chain may be
* positive recurrent,
* null recurrent, or
+ transient

— Only in the first case the chain has an invariant distibution (being the unique
limiting distribution at the same time and leading to a stationary system
when used as the initial distribution)

— In the latter two cases, no invariant/limiting/stationary distribution exists
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2.3 Positive Recurrence and Null Recurrence

* Proposition:
— If an irreducible Markov chain is transient, then, for all x,y,

lim p,(x,y)=0
N—>0

» Definition:

— Arecurrent state x is null recurrent if

lim p,(x,x)=0
n—>0

— Otherwise it is called positive recurrent.
* Proposition:

— The states of a recurrent communication class are either all null recurrent or

all positive recurrent.

* Proposition:
— If an irreducible Markov chain is null recurrent, then, for all x,y,

lim p,(x,y)=0
N—>0
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2.3 Positive Recurrence and Null Recurrence

» Theorem:
— Consider an irreducible, aperiodic and positive recurrent Markov chain.
— It has a unique limiting distribution such that,for all x,y,
lim p,,(x,»)=7() >0
n—>0

— The limiting distribution 7 is the unique invariant distribution for the chain,
i.e. it satisfies the global balance equations (GBE) together with the
normalizing condition (N):

7(Y) =2 es7(X)p(x,y), yeS (GBE)

erSﬂ-(x) = 1 (N)

— Starting with 7 makes the chain stationary.
* Note:

— If the chain is irreducible and positive recurrent but periodic, there is still a
unique invariant/stationary distribution, but no limiting distribution
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2.3 Positive Recurrence and Null Recurrence

* Proposition:
— Let Xn be an irreducible, aperiodic Markov chain. Assume that XO =Xxand
let T'denote the time for the first return to state x.
- If X, is positively recurrent, then
1
E[T]=——<w

(i)

- Ian is null recurrent or transient, then

E[T]|=w

» Idea of the proof:
— By a renewal argument applying Blackwell’s Theorem. Consecutive visits to
state i constitute a renewal process in discrete time.
* Note:

— One way to determine whether or not a chain is positively recurrent is to try
to find an invariant distribution, i.e. solve global balance equations (GBE)
and take into account the normalizing condition (N)
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The End of Chapter 2
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