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Chapter 3: Continuous-Time Markov Chains

3.1 Poisson Process

+ Consider a continuous-time stochastic process X, # = [0,%0), with
state space {0,1,2,...} and initial state Xo = 0.
» Definition:
— Process X, is Poisson process with rate A>0if

P{Xyip=k| Xy =kj=1=Ah+o(h) (3.1)

P{X;,p =k+1| X, =k} = Ah+o(h) (3.2)
— As a consequence of (3.1) and (3.2) we have

P{Xpyp %k k+1| X, =k} = o(h) (3.3)

« Let Py() = P{X,=k}.
— It follows from (3.1)-(3.3) that

Py()==ARy(1),  Py(t)= AP ()= APk (t), k=1
— Thus,

k
RO=eH,  R@=eMU k21
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3.2 Finite State Space

+ Consider a continuous-time stochastic process X, ¢ = [0,%0), with a
finite state space §

» Definition:
— Process X, is a time-homogeneous continuous-time Markov chain if

PXp =y X =xt=alx,y)h+o(h), y#x (3.6)

for some rate function : S x S — [0, o).
— As a consequence of (3.6), we have

P{Xpp =x| Xy =xp=1-a(x)h+o(h), a(x)=2,,.a(xy) (3.5)
* Markov-property:
P{X; =yl Xp0<r<s}=P{X,=y| X}
+ Time-homogeneity:

PiX;=y| Xsg=x} = P{X;s =y Xo=x}
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3.2 Finite State Space

« Letp, () =P{X,=x}.
Now it follows from (3.5) and (3.6) that

Px(0)==px(D@(X)+ 3, Py (D) (y,%)

— The same in matrix form:

p'()=p)4 (3.7)

Matrix A is called the infinitesimal generator of the chain,

—a(x), x=y

LGS {a(x,y), X#y

Equation (3.7) has a well-known solution (see Section 0.2):

p(0)= p(0)e = p(O)y "4
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3.2 Finite State Space

« Letp/x,y)=P{X,=y| Xy=x} and the corresponding transition matrix

P,=(pfx.y); x,y € 5)
— Then

B =Pd4, PRy=1I (3.8)

— It follows that
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3.2 Finite State Space

* Suppose T7,...,T,, are independent, exponentially distributed random
variables with rates b1,...,b,,, respectively

— Then I'=min{T},...,T,} is exponentially distributed with rate b;+...+b, ,
PT > =e Bt +0n)

— Furthermore
b

P{T:Ti}:m
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3.2 Finite State Space

+ Consider a continuous-time Markov chain X, with rate function a(x,y)
— Suppose Xj = x and let

T =inf{t > 0| X, # x}
— By (3.5) and (3.6), we deduce that the expiration rate of T remains constant:
P{Te(t,t+h]||T>ty=P{X;y ), #x| X; =x} =a(x)h+o(h)

— Thus, 7, the time spent in state x, is exponentially distributed with rate o(x)

— Furthermore, again by (3.5) and (3.6), we find that the new state is chosen
proportionally to the transition rates a/(x,)):

P{Xr =y}=a0({fg), yEx

— Thus, 7(x), the time spent in state x, can be interpreted as the minimum of
independent, exponentially distributed random variables 7(x,y), y # x, with
rates a(x,)), respectively
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3.2 Finite State Space

+ Consider a continuous-time Markov chain X, with rate function a(x,y)

- LetT,,n=1,2,..., denote the sequence of jump times, when the state of
the system is changed

— There is a discrete-time Markov chain J,, embedded in the jump times:
J():X(), Jn=X 4 n=1,2,...
Tl’l

— The transition probabilities p(x,y) = P{J, . =y | J,, = x} of this chain are

a(x,y)
peey)=1 at > I
0, y=X

» Definitions:
— Two states x and y of the continuous-time Markov chain X, communicate if
they communicate in the corresponding discrete-time Markov chain J,

— Continuous-time Markov chain X, is irreducible if the corresponding
discrete-time Markov chain J, is irreducible, i.e. there is only one
communication class
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3.2 Finite State Space

« Consider a continuous-time Markov chain X, with infinitesimal
generator 4
» Definition:
— A probability vector 7 is called an invariant distribution for 4 if

7A=0

* Notes:

— The system of linear equations given above for the determination of 7 are
called Global Balance Equations (GBE):

(N = 2y 7 (A (x,), y €S (GBE)

— Requiring that 7z is a probability vector (= distribution) is the so called
Normalizing Condition (N):

erSﬂ-(x) =1 (N)
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3.2 Finite State Space

* Proposition:

— Suppose 7 is a limiting distribution, i.e. for some initial distribution ¢, we

have
7 = lim ¢P
{—>0
— Then it is also an invariant distribution,
B B (3.8) \ -,
7A=lim (pF)A=¢ lim A = ¢ lim B = lim ¢F, ==
f— [—>© f— f—0
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3.2 Finite State Space

» Theorem:

Consider an irreducible continuous-time Markov chain with a finite state
space

It has a unique limiting distribution such that, for all x,y,

lim p;(x,y)=7(y)>0
{—>0

The limiting distribution 7 is the unique invariant distribution for the chain,
i.e. it satisfies the global balance equations (GBE) together with the
normalizing condition (N):

7(Na(¥) =2 ey 7 (Xa(x,y), yeS (GBE)

D xes7(x) =1 (N)

Starting with 7 makes the chain stationary.
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3.2 Finite State Space

 Let X}, be an irreducible Markov chain with infinitesimal generator 4

Assume that Xy = x and let
T=inf{r>0|X; #x}
Denote the first time after 0 that the Markov chain is in a fixed state z by ¥,
Y=mf{tr>0|X; =z}
Denote b(x) = E[Y| X, = x]. Since E[T | X, = x] = 1/a(x), we have
a(Xb() =1+, @ y)b(y)
Let
A=A y)sx,y#2), b =(b(x)x#z)
Then,
0=1+4b = b=(-A)"1

12
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3.3 Birth-and-Death Processes

Consider a continuous-time Markov chain X, # = [0,00), with transition
rates a(x,y) and countably infinite state space {0,1,2,...}
Definition:

— A continuous-time Markov chain is a birth-and-death process if

Ay, x=n, y=n+1, n=0,1,...
a(x,y)=< Uy, x=n, y=n—-1, n=12,...
0, otherwise
Thus,
P{Xtip=n|Xy =n}y=1-(uy + A4,)h+o(h)
P{X;p=n+1|X; =n}=A,h+o(h)
P{X;yp=n~1| X, = n} = tph-+ o(h)

Let P, (1) = P{X; = nj}. It follows that

Bo(1) =ty 41 P 1(6) + A1 Pt (1) — (fa + A )P (1) (3.9)
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3.3 Birth-and-Death Processes

L]

Consider a birth-and-death process X,

- LetJ, denote the corresponding discrete-time Markov chain J,, embedded
in the jump times with transition probabilities p(0,1) = 1 and for n > 0

Hn An
Hnt Ay’ UptAy

p(n,n—1)= pn,n+1)=

Definition:
— Birth-and-death process X, is irreducible if the corresponding discrete-time
Markov chain J,, is irreducible
Note:
— Irreducibility is equivalent to the condition that ﬁ,n > 0and g, > 0 forall
n=0,1,....
Definition:
— An irreducible birth-and-death process X, is recurrent if the corresponding
discrete-time Markov chain Jn is recurrent. Otherwise it is called transient.

14
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3.3 Birth-and-Death Processes

* Proposition:

— Anirreducible birth-and-death process X, is transient if and only if

n

o0

Hl M
2 Gidy <% G.11)
n=1 1

* Idea of the proof:
— For each state n, let

a(n)=P{X; =0 forsome t>0| X =n}

— From Section 2.2: The chain is transient if and only if a(n) satifies the

following:
0<a(n)<li
a(0)=1, lim, s, a(n)=0
(1, + ) (n) = pya(n-1)+ L,a(n+1), n>0 (3.10)

— It remains to prove that the conditions are equivalent.
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3.3 Birth-and-Death Processes

» Definition:
— Anirreducible, recurrent birth-and-death process X, is positive recurrent if

it has an invariant distribution, i.e. there is 7 that satisfies the global
balance equations (GBE) together with the normalizing condition (N):

7(0)4 = 7(D) sy

GBE
(m)(pp +Ag) =w(n =D Ay +7(n+ Dy, n>0 ( )
o0
2. z(n)=1 (N)
n=0
— Otherwise Xt is called null recurrent.

* Notes:
— The invariant distribution is the unique limiting distribution:

lim p;(x,y)=7(y)>0
t—>0

— Anirreducible, recurrent birth-and-death process X, may be positive
recurrent even if the corresponding discrete-time Markov chain J,, is not
positive recurrent, and vice versa.

16
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3.3 Birth-and-Death Processes

* Proposition:

— Anirreducible birth-and-death process X, is positive recurrent if and only if

A0 Ap-1
zlﬂl Uy

— The invariant distribution for a positive recurrent process is

(1) = 7;(0)‘0 ”Zl 7(0) = 1+zﬂO ﬂzl
n n= 1 n

» Idea of the proof:
— Solve the global balance equations.
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3.4 General Case

+ Consider a continuous-time Markov chain X, with a countably infinite
state space S and rate function a(x,y) for which

a(x) = Zy;txa(xay) <
— Then
P{Xpip=y| Xy =xi=a(x,y)h+oy(h)

— If the rates are not bounded, it is possible for the chain to have an explosion
in finite time. However, we assume here that no such explosion happens.

18
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3.4 General Case

« Letp/x,y)=P{X,=y| Xy=x}.

- If
2.y Pr(x, )0, (h) = o(h) (3.14)
then we have the following forward equations for the chain:
pe(%,y) ==pr (X, V)a(¥) + 2 1y, P (%, 2)2(2, y) (FWD)
— However, the corresponding backward equations need no additional
conditions:
Pt (xa y) = _a(x)pl‘ (xn y) + Zz;txa(xa Z)pl (Za y) (BWD)

— In the case of a finite state space with infinitesimal generator 4, we have the
following matrix equations (cf. (3.8)) with the same solution P, = At

P =P (FWD)
P = 4P, (BWD)
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The End of Chapter 3
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