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3.1 Poisson Process

• Consider a continuous-time stochastic process X
t
, t = [0,∞), with 

state space {0,1,2,…} and initial state X
0
= 0. 

• Definition:

– Process X
t

is Poisson process with rate λ > 0 if 

– As a consequence of (3.1) and (3.2) we have 

• Let P
k
(t) = P{X

t
= k}. 

– It follows from (3.1)-(3.3) that 

– Thus,
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3.2 Finite State Space

• Consider a continuous-time stochastic process X
t
, t = [0,∞), with a 

finite state space S

• Definition:

– Process X
t
is a time-homogeneous continuous-time Markov chain if 

for some rate function α : S × S → [0, ∞). 

– As a consequence of (3.6), we have  

• Markov-property:

• Time-homogeneity:
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3.2 Finite State Space

• Let p
x
(t) = P{X

t
= x}. 

– Now it follows from (3.5) and (3.6) that 

– The same in matrix form:

– Matrix A is called the infinitesimal generator of the chain,

– Equation (3.7) has a well-known solution (see Section 0.2): 
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3.2 Finite State Space

• Let p
t
(x,y) = P{X

t
= y| X

0
= x} and  the corresponding transition matrix 

P
t
= (p

t
(x,y); x,y ∈ S)

– Then 

– It follows that 
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3.2 Finite State Space

• Suppose T
1
,…,T

n
are independent, exponentially distributed random 

variables with rates b
1
,…,b

n
, respectively

– Then T = min{T
1
,…,T

n
} is exponentially distributed with rate b

1
+…+b

n
, 

– Furthermore
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3.2 Finite State Space

• Consider a continuous-time Markov chain X
t
with rate function α(x,y)

– Suppose X
0 
= x and let 

– By (3.5) and (3.6), we deduce that the expiration rate of T remains constant: 

– Thus, T, the time spent in state x, is exponentially distributed with rate α(x)

– Furthermore, again by (3.5) and (3.6), we find that the new state is chosen 

proportionally to the transition rates α(x,y): 

– Thus, T(x), the time spent in state x, can be interpreted as the minimum of 

independent, exponentially distributed random variables T(x,y), y ≠ x, with 

rates α(x,y), respectively
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3.2 Finite State Space

• Consider a continuous-time Markov chain X
t
with rate function α(x,y)

– Let T
n

, n = 1,2,…, denote the sequence of jump times, when the state of 

the system is changed

– There is a discrete-time Markov chain J
n
embedded in the jump times: 

– The transition probabilities p(x,y) = P{J
n+1

= y | J
n
= x} of this chain are 

• Definitions:

– Two states x and y of the continuous-time Markov chain X
t
communicate if 

they communicate in the corresponding discrete-time Markov chain J
n

– Continuous-time Markov chain X
t

is irreducible if the corresponding 

discrete-time Markov chain J
n

is irreducible, i.e. there is only one 

communication class
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3.2 Finite State Space

• Consider a continuous-time Markov chain X
t
with infinitesimal 

generator A

• Definition:

– A probability vector π is called an invariant distribution for A if

• Notes:

– The system of linear equations given above for the determination of π are 

called Global Balance Equations (GBE):

– Requiring that π is a probability vector (= distribution) is the so called 

Normalizing Condition (N):
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3.2 Finite State Space

• Proposition: 

– Suppose π is a limiting distribution, i.e. for some initial distribution φ, we 
have 

– Then it is also an invariant distribution, 

t
t

Pφπ
∞→

= lim

0limlimlim)(lim ''
)8.3(

======

∞→∞→∞→∞→

t
t

t
t

t
t

t
t

PPAPAPA φφφφπ



11

Chapter 3: Continuous-Time Markov Chains

3.2 Finite State Space

• Theorem:

– Consider an irreducible continuous-time Markov chain with a finite state 

space

– It has a unique limiting distribution such that, for all x,y, 

– The limiting distribution π is the unique invariant distribution for the chain, 

i.e. it satisfies the global balance equations (GBE) together with the 

normalizing condition (N):

– Starting with π makes the chain stationary. 
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3.2 Finite State Space

• Let X
n
be an irreducible Markov chain with infinitesimal generator A

– Assume that X
0
= x and let 

– Denote the first time after 0 that the Markov chain is in a fixed state z by Y, 

– Denote b(x) = E[Y | X
0
= x]. Since E[T | X

0
= x] = 1/α(x), we have 

– Let  

– Then, 
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3.3 Birth-and-Death Processes

• Consider a continuous-time Markov chain X
t
, t = [0,∞), with transition 

rates α(x,y) and countably infinite state space {0,1,2,…}

• Definition:

– A continuous-time Markov chain is a birth-and-death process if 

• Thus, 

• Let P
n
(t) = P{X

t
= n}. It follows that
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3.3 Birth-and-Death Processes

• Consider a birth-and-death process X
t

– Let J
n

denote the corresponding discrete-time Markov chain J
n

embedded 

in the jump times with transition probabilities p(0,1) = 1 and for n > 0

• Definition:

– Birth-and-death process X
t

is irreducible if the corresponding discrete-time 

Markov chain J
n

is irreducible

• Note:

– Irreducibility is equivalent to the condition that λ
n
> 0 and µ

n+1
> 0 for all 

n = 0,1,….

• Definition:

– An irreducible birth-and-death process X
t

is recurrent if the corresponding 

discrete-time Markov chain J
n

is recurrent. Otherwise it is called transient.
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3.3 Birth-and-Death Processes

• Proposition:

– An irreducible birth-and-death process X
t

is transient if and only if 

• Idea of the proof:

– For each state n, let 

– From Section 2.2: The chain is transient if and only if α(n) satifies the 

following: 

– It remains to prove that the conditions are equivalent.
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3.3 Birth-and-Death Processes

• Definition:

– An irreducible, recurrent birth-and-death process X
t
is positive recurrent if 

it has an invariant distribution, i.e. there is π that satisfies the global 

balance equations (GBE) together with the normalizing condition (N):

– Otherwise X
t
is called null recurrent.

• Notes:

– The invariant distribution is the unique limiting distribution:

– An irreducible, recurrent birth-and-death process X
t
may be positive 

recurrent even if the corresponding discrete-time Markov chain J
n
is not 

positive recurrent, and vice versa.
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3.3 Birth-and-Death Processes

• Proposition:

– An irreducible birth-and-death process X
t
is positive recurrent if and only if 

– The invariant distribution for a positive recurrent process is 

• Idea of the proof:

– Solve the global balance equations.
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3.4 General Case

• Consider a continuous-time Markov chain X
t
with a countably infinite

state space S and rate function α(x,y) for which

– Then  

– If the rates are not bounded, it is possible for the chain to have an explosion 

in finite time. However, we assume here that no such explosion happens.

∞<=∑
≠xy

yxx ),()( αα

)(),(}|{ hohyxxXyXP xtht +===
+

α



19

Chapter 3: Continuous-Time Markov Chains

3.4 General Case

• Let p
t
(x,y) = P{X

t
= y| X

0
= x}.

– If 

then we have the following forward equations for the chain: 

– However, the corresponding backward equations need no additional 

conditions:

– In the case of a finite state space with infinitesimal generator A, we have the 

following matrix equations (cf. (3.8)) with the same solution P
t
= e
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The End of Chapter 3


