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4.1 Optimal Stopping of Markov Chains

• Suppose P is the transition matrix for a discrete-time Markov chain X
n

with a finite state space S

– Let f(x) denote the payoff function telling the payoff if the chain is stopped 

in state x

– A stopping time (or stopping rule) T is a random variable that gives the 

time at which the chain is stopped

• Stopping time T takes values in the set {0,1,…}

• Stopping time T should be such that the decision at time n must be 

based only on what has happened up through step n. In other words: 

I{T = n} is measurable with respect to X
1
,…,X

n
.

• Since X
n
is a Markov chain, the relevant rules depend only on the last 

state X
n
so that I{T = n} = (1−d(X

0
))… (1−d(X

n−1
)) d(X

n
) for some 

function d(x) defined on S. Such rules are called stationary.

• A  stationary rule is, as well, defined by giving partition of S = S
1
∪ S

2
, 

where S
1
[S
2
] refers to states where the chain is continued [stopped].

– The goal is to maximize the expected payoff over all stopping rules. Such a 

rule T* is called an optimal stopping time (or optimal stopping rule).

• Rule T* is not necessarily unique
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4.1 Optimal Stopping of Markov Chains

• Definition:

– The value of a state x related to a stopping rule T is the expected payoff 

assuming the chain starts from x and rule T is used, i.e. 

• For any N-vector u ∈ R
N, denote

• For any stationary stopping rule T, we define operator P
T
: R

N
→ R

N, 

• Proposition:
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4.1 Optimal Stopping of Markov Chains

• Proposition:

– For any N-vector u ∈ R
N, 

• Proposition:

• Proof:

– If u = v
T
, then we already know that u = P

T
u.

– Assume then that u = P
T
u. Now 

– On the other hand, we know that 

– Thus, u = v
T
.
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4.1 Optimal Stopping of Markov Chains

• Definition:

– The value of a state x is the expected payoff assuming the chain starts from 

x and the optimal rule is used, i.e. 

• Proposition:

• Idea of the proof:

– Consider separately what happens if the chain is stopped or continued at 

time n

• Note: 

– If v is known, then an optimal rule is to stop whenever v(x) = f(x) and 

continue if v(x) > f(x)
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4.1 Optimal Stopping of Markov Chains

• Definition:

– Function u is superharmonic with respect to P if 

• Note:

– Value function v(x) is clearly superharmonic: v = max{f,Pv} ≥ Pv

• Proposition:

– If u is superharmonic, then for any stopping rule T and any x

• Proposition:

– Value function v is the smallest u such that 

• Proof:

Puu ≥
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4.1 Optimal Stopping of Markov Chains

• Define function u
1
as follows:

• Define function u
n
recursively: 

• Proposition:

– Function u
n
is superharmonic and u

n
≥ u

n+1
≥ f for all n

• Proposition:
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4.2 Optimal Stopping with Cost

• Suppose P is the transition matrix for a discrete-time Markov chain X
n

with a finite state space S

– As before, let f(x) denote the payoff function and f* = max
x
f(x)

– Furthermore, associate with each state a cost g(x) that must be paid to 
continue the chain

– The value function v(x) is thus defined by 

– And it satisfies:

– In fact, v is the smallest u such that 

– Algorithm:
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4.3 Optimal Stopping with Discounting

• Suppose P is the transition matrix for a discrete-time Markov chain X
n

with a finite state space S

– As before, let f(x) denote the payoff function and f* = max
x
f(x)

– Assume now that the value is discounted by a factor 0 < α < 1

– The value function v(x) is thus defined by 

– And it satisfies:

– In fact, v is the smallest u such that 

– Algorithm:
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The End of Chapter 4


