

Lawler (1995) Chapter 4 Optimal Stopping

4.1 Optimal Stopping of Markov Chains

4.2 Optimal Stopping with Cost

4.3 Optimal Stopping with Discounting

ch4.ppt

S-38.215 – Applied Stochastic Processes – Spring 2004

1

Chapter 4: Optimal Stopping

4.1 Optimal Stopping of Markov Chains

- Suppose *P* is the transition matrix for a discrete-time Markov chain X_n with a finite state space S
 - Let f(x) denote the **payoff function** telling the payoff if the chain is stopped in state *x*
 - A stopping time (or stopping rule) *T* is a random variable that gives the time at which the chain is stopped
 - Stopping time *T* takes values in the set {0,1,...}
 - Stopping time T should be such that the decision at time n must be based only on what has happened up through step n. In other words:
 I{T = n} is measurable with respect to X₁,...,X_n.
 - Since X_n is a Markov chain, the relevant rules depend only on the last state X_n so that $I\{T = n\} = (1-d(X_0))...(1-d(X_{n-1})) d(X_n)$ for some function d(x) defined on *S*. Such rules are called **stationary**.
 - A stationary rule is, as well, defined by giving partition of $S = S_1 \cup S_2$, where S_1 [S_2] refers to states where the chain is continued [stopped].
 - The goal is to maximize the expected payoff over all stopping rules. Such a rule T^* is called an **optimal stopping time** (or **optimal stopping rule**).
 - Rule *T** is not necessarily unique

4.1 Optimal Stopping of Markov Chains

- Definition:
 - The **value** of a state *x* related to a stopping rule *T* is the expected payoff assuming the chain starts from *x* and rule *T* is used, i.e.

$$w_T(x) = E[f(X_T) | X_0 = x]$$

• For any *N*-vector $u \in \mathbb{R}^N$, denote

$$[Pu](x) = \sum_{y \in S} p(x, y)u(y)$$

• For any stationary stopping rule *T*, we define operator $P_T : \mathbb{R}^N \to \mathbb{R}^N$,

$$[P_T u](x) = \begin{cases} f(x), & x \in S_2\\ [Pu](x), & x \in S_1 \end{cases}$$

• Proposition:

$$v_T = P_T v_T$$

-		

Chapter 4: Optimal Stopping

4.1 Optimal Stopping of Markov Chains

- Proposition:
 - For any *N*-vector $u \in \mathbb{R}^N$,

$$\lim_{n \to \infty} (P_T)^n u = v_T$$

• Proposition:

$$u = v_T \quad \Leftrightarrow \quad u = P_T u$$

- Proof:
 - If $u = v_T$, then we already know that $u = P_T u$.
 - Assume then that $u = P_T u$. Now

$$(P_T)^2 u = P_T (P_T u) = P_T u = u \quad \Rightarrow \quad (P_T)^n u = u \quad \Rightarrow \quad (P_T)^n u \to u$$

- On the other hand, we know that

$$(P_T)^n u \to v_T$$

- Thus, $u = v_T$.

4.1 Optimal Stopping of Markov Chains

- Definition:
 - The **value** of a state *x* is the expected payoff assuming the chain starts from *x* and the optimal rule is used, i.e.

$$w(x) = E[f(X_T^*) | X_0 = x] = \sup_T E[f(X_T) | X_0 = x]$$

• Proposition:

$$v = \max\{f, Pv\}$$

- Idea of the proof:
 - Consider separately what happens if the chain is stopped or continued at time n
- Note:
 - If v is known, then an optimal rule is to stop whenever v(x) = f(x) and continue if v(x) > f(x)

~	
٦.	

Chapter 4: Optimal Stopping

4.1 Optimal Stopping of Markov Chains

- Definition:
 - Function *u* is **superharmonic** with respect to *P* if

 $u \ge Pu$

- Note:
 - Value function v(x) is clearly superharmonic: $v = \max\{f, Pv\} \ge Pv$
- Proposition:
 - If u is superharmonic, then for any stopping rule T and any x

$$u(x) \ge E[u(X_T) \mid X_0 = x]$$

- Proposition:
 - Value function v is the smallest u such that

 $u \ge \max\{f, Pu\}$

Proof:

•

$$u(x) \ge E[u(X_T^*) | X_0 = x] \ge E[f(X_T^*) | X_0 = x] = v(x)$$

4.1 Optimal Stopping of Markov Chains

• Define function u_1 as follows:

$$u_1(x) = \begin{cases} f(x), & \text{if } x \text{ is absorbing} \\ \max\{f(y) \mid y \in S\}, & \text{otherwise} \end{cases}$$

• Define function u_n recursively:

$$u_n = \max\{f, Pu_{n-1}\}$$

- *Proposition*:
 - Function u_n is superharmonic and $u_n \ge u_{n+1} \ge f$ for all n
- Proposition:

$$\lim_{n \to \infty} u_n = v$$

Chapter 4: Optimal Stopping

4.2 Optimal Stopping with Cost

- Suppose *P* is the transition matrix for a discrete-time Markov chain X_n with a finite state space *S*
 - As before, let f(x) denote the payoff function and $f^* = \max_x f(x)$
 - Furthermore, associate with each state a **cost** g(x) that must be paid to continue the chain
 - The value function v(x) is thus defined by

$$v(x) = \sup_{T} E[f(X_T) - \sum_{j=0}^{T-1} g(X_j) | X_0 = x]$$

And it satisfies:

 $v = \max\{f, Pv - g\}$

- In fact, v is the smallest u such that

$$u \ge \max\{u, Pu - g\}$$

– Algorithm:

 $u_1(x) = \begin{cases} f(x), & \text{if } x \text{ absorbing} \\ f^*, & \text{otherwise} \end{cases} \qquad u_n = \max\{f, Pu_{n-1} - g\} \to v$

8

7

4.3 Optimal Stopping with Discounting

- Suppose P is the transition matrix for a discrete-time Markov chain X_n with a finite state space S
 - As before, let f(x) denote the payoff function and $f^* = \max_x f(x)$
 - Assume now that the value is **discounted** by a factor $0 < \alpha < 1$
 - The value function v(x) is thus defined by

$$\psi(x) = \sup_T E[\alpha^T f(X_T) | X_0 = x]$$

- And it satisfies:

 $v = \max\{f, \alpha P v\}$

- In fact, v is the smallest u such that

$$u \ge \max\{f, \alpha Pu\}$$

– Algorithm:

$$u_1(x) = \begin{cases} f(x), & \text{if } x \text{ absorbing} \\ f^*, & \text{otherwise} \end{cases} \quad u_n = \max\{f, \alpha P u_{n-1}\} \rightarrow$$

Chapter 4: Optimal Stopping

The End of Chapter 4

v

9