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Chapter 6: Renewal Processes

6.1 Introduction

• Definition:

– Let T
1
, T

2 
, … be independent and identically distributed (i.i.d.) nonnegative

random variables with mean µ = E[T
i
] > 0. The renewal process

associated with renewal sequence T
i
is the process N

t
with 

– Thus, N
t
denotes the number of events occurred up to time t. 

• Definition:

– Let T
1
, T

2 
, … be independent and identically distributed (i.i.d.) nonnegative

random variables with mean µ = E[T
i
] > 0. Furthermore, let Y another 

nonnegative random variable indepedndent of the sequence T
i
. The 

renewal process associated with random variable Y and sequence T
i
is 

the process N
t
with 
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6.1 Introduction

• Definitions:

– Let N
t
be a renewal process associated with renewal sequence T

i
. The age 

associated with renewal process N
t
is the process A

t
with 

– The residual life associated with renewal process N
t
is the process B

t
with 

– The total lifetime associated with renewal process N
t
is the process C

t

with

• Note:

– Renewal process N
t
alone is not a Markov process (unless the interarrival 

times T
i
be exponential) but the pair (N

t
, A

t
) constitutes a Markov process
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6.1 Introduction

• Strong Law of Large Numbers (SLLN) for renewal processes:

– Let N
t
be a renewal process associated with renewal sequence T

i  
with 

mean µ.

– Then, with probability 1, 

• Central Limit Theorem (CLT) for renewal processes:

– Let N
t
be a renewal process associated with renewal sequence T

i  
with 

mean µ and variance σ2.

– Then 
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6.2 Renewal Equation

• Consider a renewal process N
t
associated with renewal sequence T

i  

with mean µ and distribution function F.

• Definition:

– The renewal function U is defined by 

• Elementary Renewal Theorem:

• Note:

– It follows that 

][1)( tNEtU +=

µ

1)(
lim =

∞→
t

tU

t

µ

1][
lim =

∞→
t

NE

t

t

(6.3)

6

Chapter 6: Renewal Processes

6.2 Renewal Equation

• Definition:

– Let X be a nonnegative random variable.

– It has a lattice distribution if there is a > 0 such that

– In this case a is called the period of the distribution. 

– Otherwise it has a nonlattice distribution.

• Blackwell’s Theorem: 

– If T
1
, T

2 
, … have a nonlattice distribution, then for all r > 0

– If T
1
, T

2 
, … have a lattice distribution with period a, then 
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6.2 Renewal Equation

• Definition:

– Let F and G be distributions of nonnegative random variables.

– The convolution F∗G is another distribution defined by 

• Notes: 

– Let X and Y be independent nonnegative random variables with 

distributions F and G, respectively. Then the convolution F∗G is the 

distribution of their sum X+Y, 

∫∫ −=−=∗
tt

sdFstGsdGstFtGF
00

)()()()()]([

)]([}{ tGFtYXP ∗=≤+

8

Chapter 6: Renewal Processes

6.2 Renewal Equation

• Definition:

– Let F be a distribution of a nonnegative random variable.

– The iterated convolution F
(n) is defined by 

• Proposition:

• Proof:
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Chapter 6: Renewal Processes

6.2 Renewal Equation

• Consider a renewal process N
t
associated with renewal sequence T

i  

with distribution function F and renewal function U.

• Definition:

– Let h be a nonnegative function defined on [0,∞). Function φ defined on  

[0,∞) satisfies the renewal equation if 

– Equivalently, for all t, 

• Proposition:

– There is a unique solution to the renewal equation, 

• Note: 

– If F is nonlattice, h is bounded and ∫
0
∞ |h(t)|dt < ∞, then

Fh ∗+= φφ
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6.2 Renewal Equation

• Consider then the age process A
t
of the renewal process N

t
. 

• Denote its steady state distribution by 

• Proposition:

– Probabilities P{A
t
≤ x} satisfy the following renewal equation:

• Proposition:

– Steady state distribution (t → ∞) is as follows:

– It is a continuous distribution with density 
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6.2 Renewal Equation

• Consider then the residual life process B
t
of the renewal process N

t
. 

• Denote its steady state distribution by 

• Proposition:

– Probabilities P{B
t
≤ x} satisfy the following renewal equation:

• Proposition:

– Steady state distribution (t → ∞) is the same as for the age process:

– It is a continuous distribution with density

• Note:

– Starting with Y that has distribution Ψ
B
results in stationary increments
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6.2 Renewal Equation

• Consider finally the total lifetime process C
t
of the renewal process N

t
. 

• Denote its steady state distribution by 

• Proposition:

– Probabilities P{C
t
≤ x} satisfy the following renewal equation:

• Proposition:

– Steady state distribution (t → ∞) is as follows:

– If F is a continuous distribution with density f, then the steady state 
distribution of the total lifetime is a continuous distribution with density

}{lim)( xCPx t
t

C ≤=Ψ

∞→

∫ ≤+−=≤
−

t

stxt sdFxCPtFxFtxCP
0],0[ )(}{))()()((1}{

∫ −=Ψ
x

C dyyFxFx
0

1 ))()(()(
µ

)()( 1 xxfxC µ
ψ =



13

Chapter 6: Renewal Processes

6.3 Discrete Renewal Processes

• Consider a discrete-time renewal process Nj associated with renewal 

sequence Ti  with mean µ and a lattice distribution function F with 

period a = 1 and F(0) = 0.

• Thus, we have 

• Denote the point probabilities by 

• Proposition:

– Age process Aj is a discrete-time Markov chain with transition probabilities

where  
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6.3 Discrete Renewal Processes

• Proposition:

– Age process Aj is irreducible, aperiodic, and positive recurrent with steady 

state probabilities  

• Blackwell’s Theorem: 

• Proposition:

– Residual life process Bj has steady state distribution 

• Proposition:

– Total life time process Cj has steady state distribution 
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6.4 M/G/1 and G/M/1 queues

• M/G/1 queue

– Renewal every time the queue becomes nonempty

• Cycle = busy time + idle time

• Busy time and idle time independent

• Idle time exponentially distributed

– Renewal every time the queue becomes empty

• Cycle = idle time + busy time

• Busy time and idle time independent

• Idle time exponentially distributed

• G/M/1 queue

– Renewal every time the queue becomes nonempty

• Cycle = busy time + idle time

• Busy time and idle time dependent

– No renewal when the queue becomes empty
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The End of Chapter 6


