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Chapter 8: Brownian Motion

8.1 Introduction

• Limit of a random walk:

– Consider a symmetric random walk S
n
= X

1
+ … + X

n
where 

– Random walk S
n
is a martingale

– Define then process W
t
(Ν) to be the piecewisely linear process with 

– Its mean and variance are

– In particular, 

– By Central Limit Theorem, 
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Chapter 8: Brownian Motion

8.1 Introduction

• Definition:

– A Brownian motion or a Wiener process with variance parameter σ2 is a 

stochastic process X
t
taking values in the real numbers satisfying

• (i)   X
0
= 0; 

• (ii)  For any s
1
≤ t

1
≤ s

2
≤ t

2
≤ … ≤ s

n
≤ t

n
, the random variables 

X
t1
− X

s1
, X

t2
− X

s2
, …, X

tn
− X

sn
are independent;

• (iii) For any s < t, the random variable X
t
− X

s
has a normal distribution 

with mean 0 and variance σ2(t − s);

• (iv) The paths are continuous, i.e., X
t
is a continuous function of t.

– Standard Brownian motion is a Brownian motion with σ2 = 1.

– Brownian motion starting at x is defined by Y
t
= x + X

t
.

• Notes: 

– Process Z
t
= X

t
/σ is a standard Brownian motion

– Process Y
t
= a−1/2 X

at
is a Brownian motion with variance parameter σ2

• Fact:

– The path of a Brownian motion X
t
is nowhere differentiable
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Chapter 8: Brownian Motion

8.2 Markov Property

• Consider a Brownian motion X
t
.

– Let F
t
= σ(X

s
; s ≤ t) denote the sigma-algebra generated by the process up 

to time t.

– Due to independent increments, X
t
is a Markov process (in a continuous  

state space) with the following Markov property:  

– Furthermore, since increments have zero mean (i.e., no drift), we have 

– Thus, X
t
is a martingale. 

– Since increments have a normal distribution, the transition density p
t
(x,y) =

P{X
t
∈ dy | X

0
= x} is as follows: 
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Chapter 8: Brownian Motion

8.2 Markov Property

• Chapman-Kolmogorov equation: 

• Markov property: 

– Process Y
t
= X

s+t
− X

s
is a Brownian motion independent of F

s

• Strong Markov property: 

– Let T be a stopping time and F
T
= σ(X

s
; s ≤ T) denote the sigma-algebra 

generated by the process up to time T.

– Process Y
t
= X

T+t
− X

T
is a Brownian motion independent of F

T

• Reflection principle: 

– Consider a Brownian motion X
t
starting at a. Let b > a. Then, for all t > 0, 

• Example: 

– Let t > 1. Then, by applying the reflection principle, we may deduce that
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Chapter 8: Brownian Motion

8.3 Zero Set of Brownian Motion

• Note on scalings: 

– Let X
t

be a standard Brownian motion

– Process Y
t
= t X

1/t
is a standard Brownian motion

• Consider a standard Brownian motion X
t
.

– Let 

– According to the example presented in the previous slide, 

– Thus, with probability 1, process X
t

returns to the origin, i.e., X
t

is recurrent

taking both positive and negative values for arbitrarily large values of t.  

– Now Y
t
= t X

1/t
is also a standard Brownian motion taking both positive and 

negative values for arbitrarily small values of t.

– Thus, 
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Chapter 8: Brownian Motion

8.7 Brownian Motion with Drift

• Definition:

– Process Y
t
is a Brownian motion with drift µ if  Y

t
= X

t
+ µ t, where X

t
is 

a Brownian motion

• Properties:

– (i)   Y
0
= 0; 

– (ii)  For any s
1
≤ t

1
≤ s

2
≤ t

2
≤ … ≤ s

n
≤ t

n
, the random variables 

Y
t1
− Y

s1
, Y

t2
− Y

s2
, …, Y

tn
− Y

sn
are independent;

– (iii) For any s < t, the random variable Y
t
− Y

s
has a normal distribution 

with mean µ(t − s) and variance σ2(t − s);

– (iv) The paths are continuous, i.e., Y
t
is a continuous function of t.

• Transition density: 

• Chapman-Kolmogorov equation:
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Chapter 8: Brownian Motion

The End of Chapter 8


