
9.1 Integration with Respect to Random Walk
9.2 Integration with Respect to Brownian Motion
9.3 Ito's Formula
9.4 Simulation
ch9.ppt
S-38.215 - Applied Stochastic Processes - Spring 2004
1

Chapter 9: Stochastic Integration

9.1 Integration with Respect to Random Walk

- Definition:
- Consider symmetric random walk $S_{n}=X_{1}+\ldots+X_{n}$ with $S_{0}=0$ and

$$
P\left\{X_{i}=1\right\}=P\left\{X_{i}=-1\right\}=1 / 2, \quad E\left[X_{i}\right]=0, \quad D^{2}\left[X_{i}\right]=1
$$

- Let $F_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ denote the σ-algebra generated by random variables X_{1}, \ldots, X_{n}.
- Let B_{n} be F_{n-1}-measurable random variable (called bet) with $E\left[B_{n}^{2}\right]<\infty$.
- The integral of process B_{n} with respect to random walk S_{n} is defined by

$$
Z_{n}=\sum_{i=1}^{n} B_{i} X_{i}=\sum_{i=1}^{n} B_{i}\left(S_{i}-S_{i-1}\right)=\sum_{i=1}^{n} B_{i} \Delta S_{i}
$$

- Properties:
- Process Z_{n} is a martingale (as shown in Ch. 5), i.e.

$$
E\left[Z_{n+m} \mid F_{n}\right]=Z_{n}
$$

- It has zero mean, $E\left[Z_{n}\right]=0$, and a finite variance,

$$
D^{2}\left[Z_{n}\right]=\sum_{i=1}^{n} E\left[B_{i}^{2}\right]<\infty
$$

9.2 Integration with Respect to Brownian Motion

- Definition:
- Consider a standard Brownian motion W_{t}.
- Let $F_{t}=\sigma\left(W_{s} ; s \leq t\right)$ denote the sigma-algebra generated by the process up to time t.
- Let Y_{t} be F_{t}-measurable process (called strategy) with right-continuous paths having left limits, $E\left[Y_{t}^{2}\right]<\infty$ and

$$
\int_{0}^{t} E\left[Y_{S}^{2}\right] d s<\infty
$$

- Furthermore, we assume that Y_{t} is a simple strategy, i.e. there are $0=t_{0}<t_{1}<\ldots<t_{n}<t_{n+1}=\infty$ such that

$$
Y_{t}=\sum_{i=0}^{n} Y_{i} 1_{\left[t_{i}, t_{i+1}\right)}^{(t)}
$$

- The integral of the simple strategy Y_{t} with respect to Brownian motion W_{t} is defined by

$$
Z_{t}=\int_{0}^{t} Y_{s} d W_{s}=\sum_{i=0}^{j-1} Y_{i}\left(W_{t_{i+1}}-W_{t_{i}}\right)+Y_{j}\left(W_{t}-W_{t_{j}}\right), \quad \text { for all } t_{j} \leq t<t_{j+1}
$$

Chapter 9: Stochastic Integration

9.2 Integration with Respect to Brownian Motion

- Properties:
- Integral is linear, i.e. for all simple strategies X_{t} and Y_{t} and real numbers a and b, the strategy $a X_{t}+b Y_{t}$ is simple and

$$
\int_{0}^{t}\left(a X_{s}+b Y_{S}\right) d W_{s}=a \int_{0}^{t} X_{s} d W_{s}+b \int_{0}^{t} Y_{S} d W_{S}
$$

- Integral $Z_{t}=\int_{0}^{t} X_{s} d W_{s}$ is a martingale with respect to history F_{t}, i.e. Z_{t} is F_{t}-measurable, $E\left[\left|Z_{t}\right|\right]<\infty$ and

$$
\begin{equation*}
E\left[Z_{t+s} \mid F_{t}\right]=Z_{t} \tag{9.1}
\end{equation*}
$$

- In particular,

$$
E\left[Z_{t}\right]=E\left[E\left[Z_{t} \mid F_{0}\right]\right]=E\left[Z_{0}\right]=0
$$

- Moreover, it has a finite variance,

$$
\begin{equation*}
D^{2}\left[Z_{t}\right]=\int_{0}^{t} E\left[Y_{s}^{2}\right] d s<\infty \tag{9.2}
\end{equation*}
$$

9.2 Integration with Respect to Brownian Motion

- Definition:
- Let Y_{t} be F_{t}-measurable process (called strategy) with right-continuous paths having left limits, $E\left[Y_{t}^{2}\right]<\infty$ and

$$
\int_{0}^{t} E\left[Y_{S}^{2}\right] d s<\infty
$$

- Define for all n, the following simple strategies

$$
Y_{t}^{(n)}=\sum_{k} n f_{(k-1) / n}^{k / n} Y_{S} d s 1_{[k / n,(k+1) / n)}(t)
$$

- The integral of the strategy Y_{t} with respect to Brownian motion W_{t} is defined as the limit

$$
Z_{t}=\int_{0}^{t} Y_{S} d W_{s}=\lim _{n \rightarrow \infty} \int_{0}^{t} Y_{S}^{(n)} d W_{s}
$$

- Properties:
- It has the same properties as the integral of a simple strategy: it is linear and a martingale with

$$
E\left[Z_{t}\right]=0, \quad D^{2}\left[Z_{t}\right]=\int_{0}^{t} E\left[Y_{s}^{2}\right] d s<\infty
$$

Chapter 9: Stochastic Integration

9.3 Ito's Formula

- Consider a standard Brownian motion W_{t}.
- Let f be a function with at least two continuous derivatives. Then

$$
\begin{aligned}
& f\left(W_{t}\right)-f\left(W_{0}\right)=\sum_{j=0}^{n-1}\left[f\left(W_{(j+1) t / n}\right)-f\left(W_{j t / n}\right)\right] \approx \\
& \sum_{j=0}^{n-1} f^{\prime}\left(W_{j t / n}\right)\left[W_{(j+1) t / n}-W_{j t / n}\right]+\frac{1}{2} \sum_{j=0}^{n-1} f^{\prime \prime}\left(W_{j t / n}\right)\left[W_{(j+1) t / n}-W_{j t / n}\right]^{2}
\end{aligned}
$$

- Define

$$
Q_{t}(g)=\lim _{n \rightarrow \infty} \sum_{j=0}^{n-1} g\left(W_{j t / n}\right)\left[W_{(j+1) t / n}-W_{j t / n}\right]^{2}
$$

- If g is continuous, then

$$
Q_{t}(g)=\int_{0}^{t} g\left(W_{s}\right) d s
$$

- Ito's formula:
- If f is a function with two continuous derivatives. Then

$$
f\left(W_{t}\right)-f\left(W_{0}\right)=\int_{0}^{t} f^{\prime}\left(W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(W_{s}\right) d s
$$

9.4 Simulation

- Let Z_{t} denote a Brownian motion with drift process X_{t} and variance process Y_{t}^{2}, i.e.

$$
Z_{t}=\int_{0}^{t} X_{s} d s+\int_{0}^{t} Y_{S} d W_{s}
$$

- In differential form this is written

$$
d Z_{t}=X_{t} d t+Y_{t} d W_{t}
$$

- Consider then the following stochastic differential equation:

$$
d X_{t}=a\left(X_{t}\right) d t+b\left(X_{t}\right) d W_{t}
$$

- The solution is a process X_{t} that at any particular time looks like a Brownian motion with drift process $a\left(X_{t}\right)$ and variance process $b\left(X_{t}\right)$
- To simulate this process,
- choose some small number Δt and i.i.d. random variables Y_{1}, Y_{2}, \ldots such that $P\left\{Y_{i}=1\right\}=P\left\{Y_{i}=-1\right\}=1 / 2$
- set $X_{0}=0$ and let

$$
X_{n \Delta t}=X_{(n-1) \Delta t}+a\left(X_{(n-1) \Delta t}\right) \Delta t+b\left(X_{(n-1) \Delta t}\right) \sqrt{\Delta t} Y_{n}
$$

