- 1. Simulate TCP congestion control options. Use RFC793edu TCP agent with
 - I additive increase and multiplicative decrease
 - II exponential increase and multiplicative decrease
 - III AIMD and slow start
 - IV AIMD, slow start and fast retransmission (=TCP Tahoe)
 - V TCP Reno
 - VI TCP Vegas

For each case, use a 10 s simulation time.

- (a) For each simulation,
 - plot the congestion window
 - explain the events in the congestion window plot. Specifically identify in each picture the different phases:
 - additive increase
 - exponential increase and slow start
 - time out
 - fast retransmit
- (b) Calculate the number of packet arrivals, packet drops and throughput,

$$throughput = \frac{\#packet_arrivals - \#packet_drops}{simulation_time},$$
(1)

for each option. Discuss the reasons and consequencies. Which throughput is the best and why?

Target: The student understands the basic mechanisms of TCP congestion control.

2. Simulate TCP Reno and Vegas so that there is a bottleneck link with two competing TCP connections: one Reno and one Vegas. Run a long simulation and estimate the numbers of packet drops and throughput for both connections. Explain the results. What can you say about *fairness* in this situation? How is the situation different if all TCP connections use the same agent?

Target: The student understands the problem of fairness in the Internet transport context.