

### S-38.3041 Operator Business Course introduction



### S-38.3041 – Contacts

- Personnel
  - Lectures Heikki Hämmäinen and team (tel. 4516144)
  - Course assistant Turo Brunou (tel. 4512462)
- Communications
  - Course web site http://www.netlab.hut.fi/opetus/s383041
  - News group opinnot.sahko.s-38.tietoverkkotekniikka
  - Email: see course web site



### S-38.3041 - Completion

- Examination
  - An acceptable performance required in the examination
  - Exam includes 5 questions a 6 points
- Excercise
  - A one day session of mobile operator business game
  - Obligatory, grading of team and individual performance
  - Organized in April
  - Information about registration announced on web site



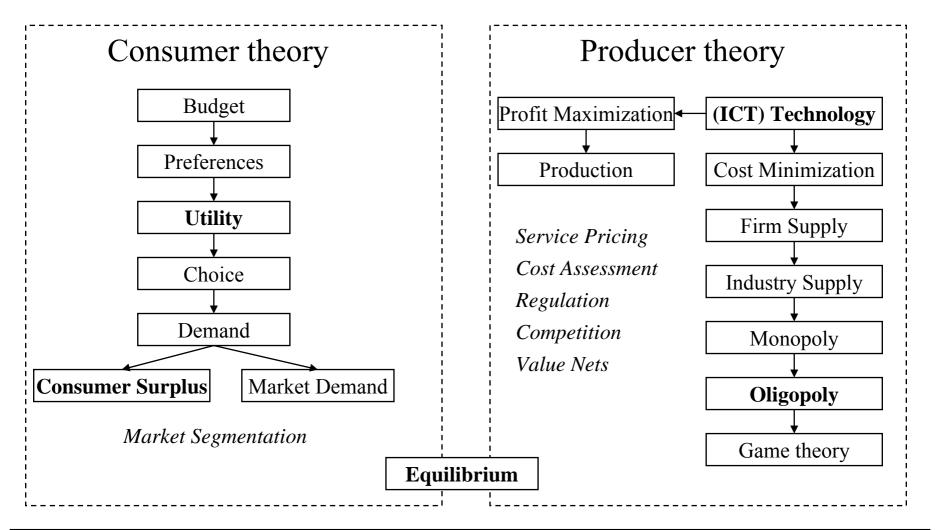
### Lecture schedule

- 14.03 Course introduction. Big picture (HH)
- 19.03 Consumer customers (HH)
- 21.03 No lecture (Easter)
- 26.03 No lecture (Easter)
- 28.03 Enterprise customers (HH)
- 02.04 Operators (AK)
- 04.04 Pricing 1 (AK)
- 09.04 Competition and MOB game (HH/TB)
- 11.04 Pricing 2 (HV)
- 16.04 Investments (TS)
- 18.04 Interconnect and roaming (HH)
- 23.04 Charging and billing (HV)
- 25.04 Regulation (TS)
- 30.04 Spectrum, course wrap-up (TS)

April Game sessions 15.4, 17.4, 19.4

07.05 Examination




### Course materials

- Exam material
  - *Pricing Communication Networks*, C Courcoubetis, R Weber, Wiley, 2003 (commercial, see Wiley, Amazon)
  - Lecture slides (to be available on web before/after each lecture)
- Other recommended readings
  - ICT Regulation Toolkit (free, on-line): www.ictregulationtoolkit.org
  - Intermediate Microeconomics, H.Varian, 2002
  - Network Services Investment Guide, Gaynor M, 2003
  - The Telecom Managers Survival Guide, Medcroft S, 2003



### What is operator business?

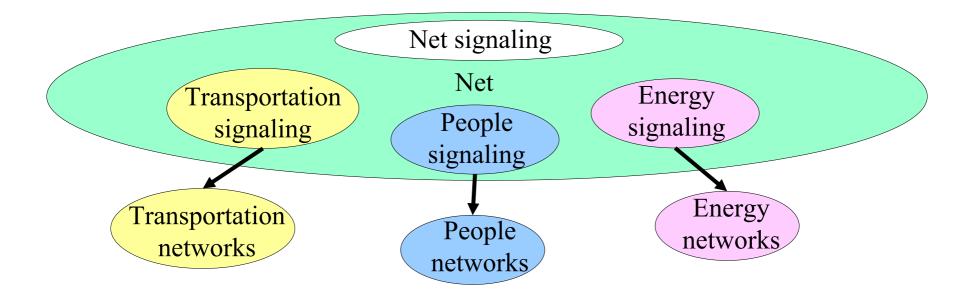
Application of microeconomic theory to networking services markets





### Introduction – Big Picture




# Common aspects of networked industries

| Problem                     | Description                                                                        | Examples                                                 |
|-----------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|
| Bottleneck                  | Traffic stacks because<br>capacity is limited or<br>temporarily blocked            | Airport, telephone<br>switch, damaged<br>railroad bridge |
| Access                      | Physical availability,<br>economical affordability                                 | Electricity, water,<br>Internet                          |
| Small vs large<br>customers | Unit cost depends on the volume of contract                                        | Prices of electricity,<br>water, communications,<br>etc  |
| Short vs long<br>haul       | Unit cost depends on<br>distance. International miles<br>cheaper than local miles. | Prices of postal mail,<br>telephone, etc                 |



### About "signaling"

Core of information society



- Signaling controls the resources of a network
- Net enables signaling for physical non-ICT networks (e.g. energy)
- Signaling of non-ICT networks depends on signaling of Net

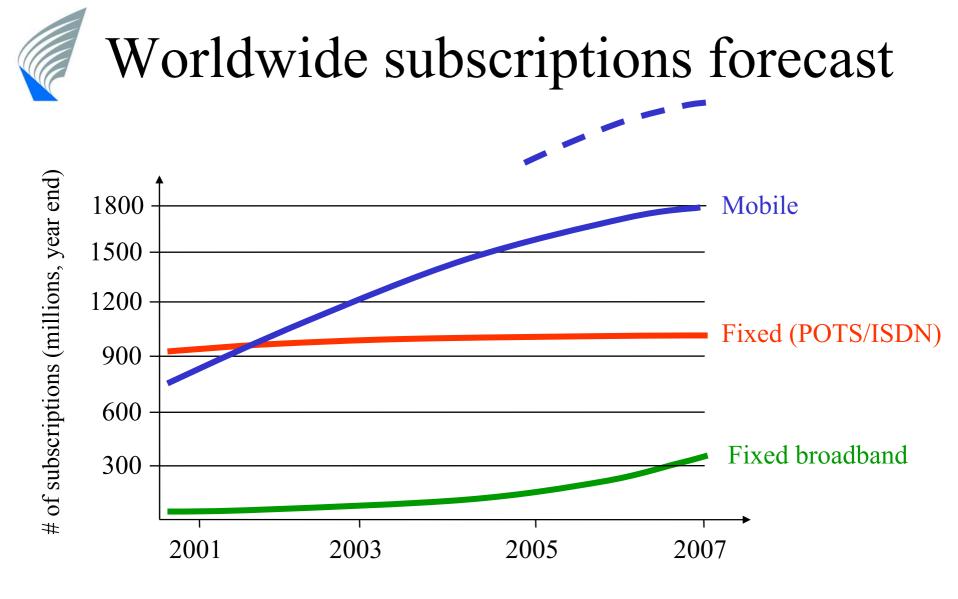


### Visions of media convergence

Big Pipe

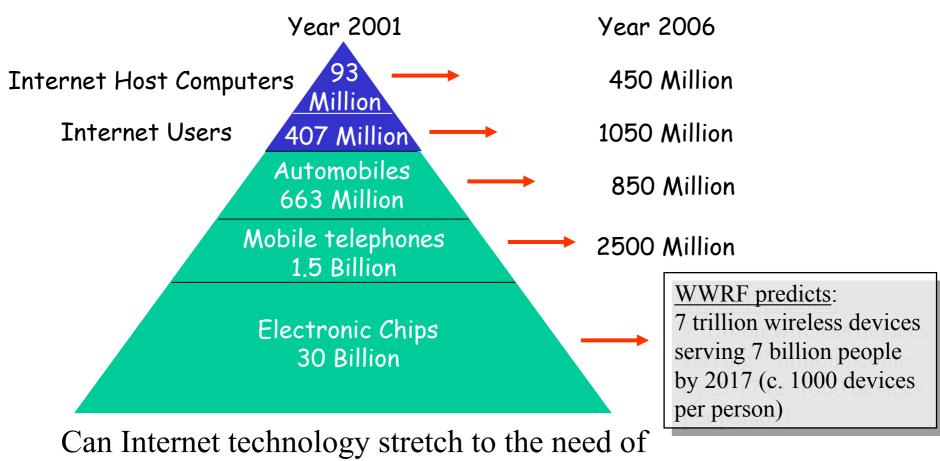
- Single channel
- Unified value nets
- E.g. Internet

**Big Box** 


- Single terminal
- Several channels
- Smart or dumb
- E.g. Linux/Java

Big Company

- Global company
- Single ecosystem
- E.g. Vodafone, MS

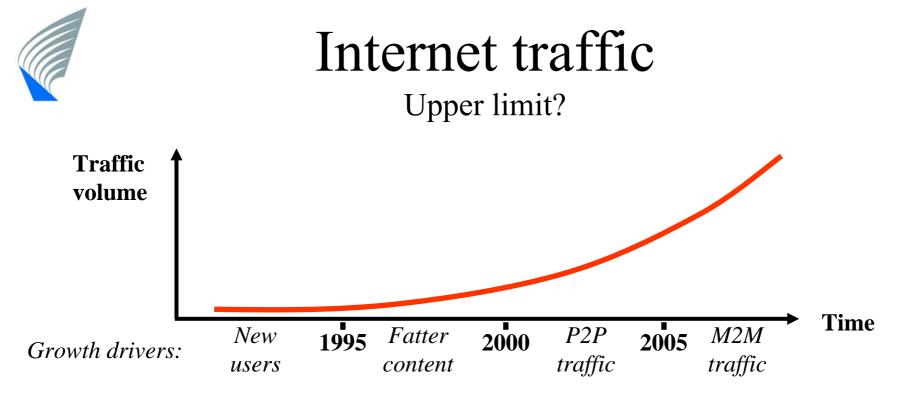

- Big Pipe may happen as Internet evolution
- Big Box may result from the operating system battle
- Big Company may get control of Big Pipe and/or Big Box
  - Business ecosystems grow and die slowly (e.g. Microsoft ecosystem)
  - Governments may interfere

Source: P Longstaff, 2003



Source: Ericsson, 2003

## Fast Increase of Users and Devices




• larger address space ?

• lower costs ?

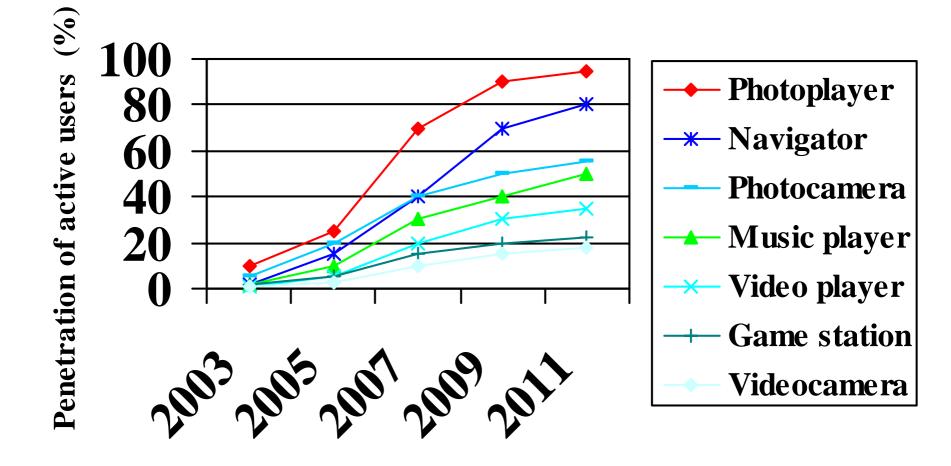
• higher transport capacity ?

Source: Internet World Stats, 2006



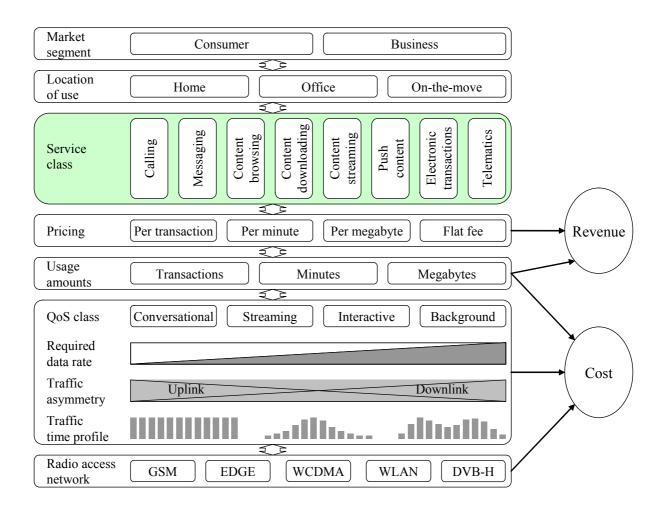
- Internet traffic continues doubling per year
- Growth is currently limited by user-to-network bandwidth
- Machine readability increasing rapidly
- No obvious upper limit for non-human traffic (P2P and M2M)




#### Evolution of network value Positive Network Effect

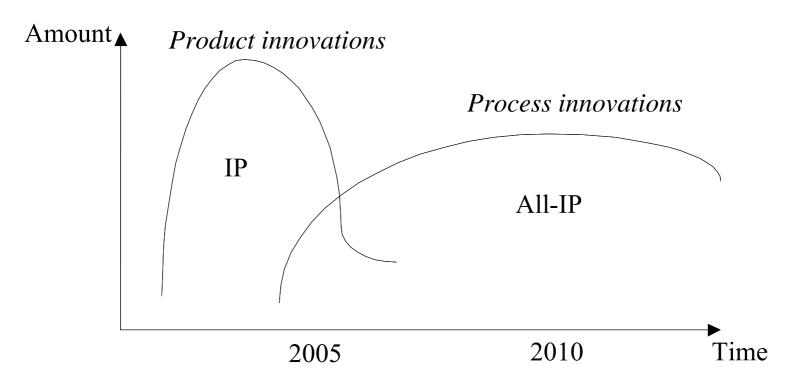
- 1. Sarnoff's Law
  - Value  $\approx N$  (viewers in TV/radio broadcast networks)
- 2. Metcalfe's Law
  - Value  $\approx N^2$  (two-way connections in phone and data networks)
- 3. Reed's Law
  - Value  $\approx 2^N$  (social groups in group-forming networks)

Value of Internet evolves favorably also because


- *N* grows (PCs, cars, mobiles, automatic devices)
- usage time per *N* grows (always-on)
- new service types
  - new delivery techniques (datacasting, audio&video, multicast)
  - new interaction techniques (MMS, chat, conferencing)
- more applications and content (commercial and user-created)

### Adoption of New Handset Functions Case Finland






### Service Classification



Source: ECOSYS, T.Smura, 2005





- Compare with the invention of electricity
- Processes and business models change slowly



#### Technology vision Wireless systems

#### 2005

- 28kb+ packet IP in all new handsets (GSM & WCDMA)
- Multiradio handsets spreading (GPRS & WLAN & Bluetooth)
- Bluetooth common in lightweight apps, and WLAN in heavy apps
- GPRS handset positioning common (GSM, GPS)

2010

- 100kb+ subscriber speed common in cellular (WCDMA)
- Energy conservation efficiency only tripled (fuel cells, solar cells)
- Seamless support for multiradio common (WCDMA & GSM & WLAN & PAN)
- Spectral efficiency of antennas clearly improved (adaptive antennas, MIMO)
- UWB (Ultra Wide Band) competing with BlueTooth and WLAN
- 4G spec maturing if WRC2006 has allocated bandwidth

#### Battery, heat, and radio are the bottlenecks

Source: TEKES NETS, 2003



#### Technology vision Broadband packet networks

#### 2005

- 512kb+ packet IP common in homes (ADSL, HFC)
- Access operators starting the prioritisation of traffic (diffserv, less than best effort)
- Optics increased in core and access networks (DWDM, MPLS)
- Ethernet changing the architecture of access networks

#### 2010

- 10Mb+ IP common in homes (VDSL, HFC)
- Roaming common in fixed networks (WLAN/BlueTooth in homes)
- Increased capacity and operability in optical networks (all-optical, switching)

#### Network is the bottleneck, not terminal

Source: TEKES NETS, 2003



#### Technology vision Services and applications

#### 2005

- Mobile Internet services as common as those of wireline Internet
- Users can access their files from home, office, and on the move
- IP audio delivery common (plus broadcast radio in wireline Internet)
- Voice-over-IP emerging in wireline (WWW push-to-talk, chat, SIP)
- New services are based on open standards (IETF, 3GPP, W3C, OMA), but applications remain proprietary

#### 2010

- Content adapts to environment (place, radio, device, user profile)
- IP audio/video has become efficient (multicast) and controlled (QoS)
- Voice-over-IP common in public networks (wireline and wireless)
- User controls (home) devices independently of place and time

#### Usability is the bottleneck

Source: TEKES NETS, 2003