

# Wireless Spectrum Economics

#### (Courcoubetis&Weber: Chapter 14)



# Lecture outline

- Introduction
- Spectrum management approaches
  - Command-and-control approach
  - Market-based approach
  - Commons approach
- Spectrum allocation
- Spectrum assignment
  - Auctions



# Radio spectrum is

- A valuable resource
  - pre-requisite for all wireless communications systems:
    e.g. television, mobile networks, satellite and radar systems, fixed radio links
  - The economic value derived from radio spectrum is around 2% - 2.5% of EU's GDP (Analysys 2004)
- Regulated
  - to ensure that there is no interference between different systems and users
- Increasing in demand
  - Demand for mobility
  - Rapid development of new technologies



# Spectrum management

Three issues to be solved

- Spectrum allocation
  - What types of uses should be allowed?
- Spectrum assignment
  - Who should be allowed to operate the frequencies?
- Centralized vs. decentralized decisionmaking
  - Allocation & assignment decided by state or by users?

# Command-and-control approach

- Traditional way, government decides on both allocation and assignment
- Secondary spectrum trading not allowed
- Primary assignment methods:
  - First-come-first-served
    - Fixed WiMAX frequencies in Finland
  - Beauty contests
    - TV, Radio, 3G in Finland and Sweden
  - Auctions
    - 3G in Britain, Germany



# Market-based approach

- Primary assignment by government by e.g. auctions
- Secondary trading allows rights to be sold
- Owner may decide how to use spectrum
  - Technology neutrality: Government decides the service, spectrum owner can choose the technology
  - Service neutrality: Spectrum owner can decide also the service
  - Limitations to avoid interference still required
- European Commission plans to introduce spectrum markets in the EU by 2010



# Commons approach

- Government allocates license-exempt spectrum
  - Anyone can utilize the spectrum
- Limitations
  - Transmission power levels to avoid interference
  - Parts of spectrum for specific technologies
- Fertile ground for innovations
  - WLAN, Bluetooth
- Further harmonisation on EU-level considered



#### Spectrum management summary

| Approach                         | Spectrum<br>allocation                                                    | Spectrum<br>assignment                                          |
|----------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|
| Command-and-<br>control approach | Centralized, use of spectrum pre-defined                                  | Centralized, trading not allowed                                |
| Market-based<br>approach         | Liberalized, license<br>holders may choose how<br>to utilize the spectrum | Primary assignment<br>centralized, secondary<br>trading allowed |
| Commons<br>approach              | Centralized, restrictions<br>on technology and Tx<br>power levels         | Unlicensed spectrum, no assignments                             |



# Spectrum Allocation

Demand vs. Supply

- International bodies (ITU-R) create global recommendations on spectrum allocations, but governments make decisions
- Governments have traditionally considered spectrum as a scarce resource requiring extremely strict regulation
- Strong demand of mobility together with advances in mobile device technologies maintain demand for new spectrum
- When and how will the gap between demand and supply of spectrum be filled?
- The answer consists of new technologies, new regulation, and new business models



#### Spectrum Allocation New Technologies

- Spectrum is not a concrete nor finite resource to be licenced. Instead, a licence simply allows deployment of particular transceivers/receivers
- Interference is not an inherent property of spectrum. Instead, it is a property of devices evolving rapidly
- *Digitalization* saves spectrum (e.g. 5:1 compression ratio in TV signals)
- Spectrum can be shared more efficiently through *spread spectrum* technologies (e.g. WCDMA)
- The low power levels of *ultrawideband* enable the local use of spread spectrum as an underlay for the pre-existing spectrum licences
- *Smart directional antennas* reduce interference between devices
- Cooperative *mesh networks* promise to reduce power levels further
- Better compression through optimal coding algorithms (e.g. turbo codes)
- Software radio and network intelligence enable better exploitation of the above mentioned new technologies (when?)

Source: G.Staple, K.Werbach, 2004



# Spectrum Allocation

#### New regulations

- Spectrum reallocation
  - scanning the licenced radio spectrum in urban areas shows that significant portions of spectrum are unused at any given point of time
  - more efficient reallocation can unleash spectrum for new services (e.g. terrestrial reuse of satellite spectrum)
- Technology/service neutrality
  - allowing the flexible use (e.g. hybrid use) of licences to speed up deployment of new technology
- Spectrum trading and leasing
  - allowing the resell of licences to speed up the search for best exploitation of spectrum
- Unlicensed spectrum
  - the success of WLAN on unlicenced bands has created a new paradigm
  - new spectrum at 5GHz has been reserved for unlicenced use
  - unlicenced use of "underlay spectrum" may be possible on licenced bands

Source: G.Staple, K.Werbach, 2004



#### Spectrum Allocation New Converged Business Models

- Future mobile handsets with multiple radio interfaces (e.g. WCDMA, WLAN, and DVB-T) will necessarily connect to multiple traditionally separate radio-specific value chains
- Each existing radio-specific value chain has its own merits and is likely to extend its life-cycle through the new multi-radio handsets
- New converged value chains/nets are likely to emerge based on new and multiple radio interfaces
  - digital TV (DVB-T) with return channel (WCDMA)
  - broadcast services over WLAN or WCDMA
  - seamless roaming (e.g. WLAN access when visiting a neighbor)
- An economically efficient market favors business models that attract traffic from bottleneck radios (e.g. WCDMA) to abundant radios (e.g. WLAN and DVB-T) when possible

Source: G.Staple, K.Werbach, 2004



#### Spectrum Assignment Big Picture

- Governments can assign the national cellular spectrum licences through comparative evaluation (i.e. "beauty contest"), lottery, or auction
- Many governments rely on comparative evaluation because they want to keep control on the spectrum usage while supporting the investment capabilities of telecom industry
- Lotteries have been abandoned because of large overhead (huge number of bidders) and low hit rate (wrong kind of winners)
- Auctioning has gained popularity because of fairness, transparency, good hit rate, and remarkable government revenues
- Statistics tell that a government favors auctioning when
  - the density of country's population is high (e.g. the Netherlands)
  - the government's budget deficit is large (e.g. the UK)
  - the number of licenses is high (e.g. the US)



# Auction Basics

- An auction is a sale in which the price of an item is determined by bidding
- Auctioning is economically efficient, i.e. maximizes the social welfare, if it allocates items to bidders who value them most
- Auction design for a particular situation is as much art as science, but the basic theory is still useful



# Types of Auction

- *Open* (oral) auctions often have several rounds while *sealed-bid* (written) auctions may only take a single round
- Descending price (*Dutch*) auction is typically faster than ascending price (*English*) auction, because the auctioneer alone drives the price down (using a "*Dutch clock*")
- In a *first-price sealed-bid* auction the bidders decide offline their claim ⇒ no information is revealed ⇒ result equals to Dutch auction (winner pays the highest bid = his own)
- In a *second-price sealed-bid* (or Vickrey) auction the bidders tend to bid their true valuations ⇒ result equals to English auction (winner pays the second highest bid)



# Multi-object auctions

- In a homogeneous multi-object (i.e. *multi-unit*) auction a number of identical units of a good are auctioned, whereas in *heterogeneous* auction, the objects are not identical
- Multi-object auctions can be either *simultaneous* or *sequential*; in secuential auctions prices tend to decline in the later auctions due to fewer or poorer bidders
- In *double* auctions multiple bidders and sellers are treated symmetrically (e.g. stock exchanges)
- *Simultaneous ascending auction* (SAA) is the most common approach for auctioning a set of spectrum licences

# Simultaneous Ascending Auction

- Simultaneous bidding on *multiple heterogeneous objects* (e.g. spectrum licences) occurs in rounds and continues until nobody posts a bid on any object
- In each round, bidders make *sealed bids* and the auctioneer posts the highest bid and bidder for each object
- Bidders gradually reveal information during rounds thus reducing the probability of *winner's curse* (i.e. a bid higher than value) and enabling more aggressive bidding
- Simultaneous bidding enables the bidders to efficiently consider *complementarity* between objects (e.g. adjacent bands of spectrum)
- *Minimum bid increments* are enforced to secure fast finish
- Can be modified to allow *combinatorial bidding*, i.e. bundling of objects, although in the basic form this is not allowed



### Simultaneous Ascending Auction

Inefficient allocation, due to complementarity

| Bidder   | V <sub>A</sub> | VB | V <sub>AB</sub> |
|----------|----------------|----|-----------------|
| <u>1</u> | 1              | 2  | 6               |
| <u>2</u> | 3              | 4  | 5               |

- Consider an auction of two spectrum licences, A and B, where
  - two bidders,  $\underline{1}$  and  $\underline{2}$ , compete
  - individual valuations are  $v_{A}$  and  $v_{B},$  and a combined valuation is  $v_{AB}$
  - licences are complements for bidder  $\underline{1}$ , but substitutes for bidder  $\underline{2}$
- Socially optimal allocation would be  $v_{AB}$  for <u>1</u>, but there are no prices facilitating this
- A possible but complicated solution is to allow combinatorial bidding





Incentive to Delay Bidding

| Bidder   | VA | V <sub>B</sub> | Budget |
|----------|----|----------------|--------|
| <u>1</u> | 15 | 30             | 20     |
| <u>2</u> | 10 | 0              | 20     |
| <u>3</u> | 0  | 5 w.p. 0.9     | 20     |
|          |    | 15 w.p. 0.1    |        |

- Consider an auction where bidder <u>3</u> values B at 5 or 15, with probalities 0.9 and 0.1, respectively
- This partial information on bidder <u>3</u> implies that <u>1</u> waits to see how <u>3</u> bids, and vice versa
- Deadends like this one are handled with proper *activity rules* enforcing bidders to continue



#### Simultaneous Ascending Auction Free Rider Problem

| Bidder   | V <sub>A</sub> | V <sub>B</sub> | V <sub>AB</sub> | Budget |
|----------|----------------|----------------|-----------------|--------|
| <u>1</u> | 4              | 0              | 0               | 3      |
| <u>2</u> | 0              | 4              | 0               | 3      |
| <u>3</u> | 1+ε            | 1+ε            | 2+ε             | 2      |

- Consider that combinatorial bidding is allowed
- Bidder <u>1</u> bids 1 on  $v_A$ , <u>2</u> bids 1 on  $v_B$ , and <u>3</u> bids 2 on  $v_{AB}$  $\Rightarrow$  seller announces that <u>3</u> wins if no further bids are made
- To save money, bidder <u>1</u> may wait for <u>2</u> to raise its bid, and vice versa
- If both <u>1</u> and <u>2</u> decide to wait, the combined bid of <u>3</u> wins with a socially suboptimal value  $\Rightarrow$  <u>3</u> gets a free ride



#### Spectrum Auctions Advice to Governments (the U.S. Perspective)

- Allocating the spectrum is as important as its assignment
  - Avoid useless spectrum by listening to experts (e.g. interference issues)
  - Define cleaning rules for spectrum occupied by poor usage
- Use care when modifying succesful auctioning rules (e.g. SAA)
- Allow adjusting the auction parameters between rounds
- Reduce effectiveness of bidders' revenue-reducing strategies
  - nationwide licences eliminate demand reduction due to spectrum split
  - anonimity eliminates retaliation ("you stay off my licence and I stay off your licence")
- Use spectrum caps to limit anticompetitive concentration
- Implement special treatment for designated entities with care
- Promote market-based tests in spectrum management

Source: P.Cramton, 2002



# **UMTS** Auctions

- European governments copied the American experience, i.e. the simultaneous ascending auction
- The UK and Netherlands chose a simple version where a bidder can win at most a single licence, while Germany allowed multiple bids
- In the Netherlands, 5 licences and 5 incumbents ⇒ entrants allied with incumbents ⇒ price level remained low
- In the UK, 5 licences and 4 incumbents ⇒ tough competition lasting 150 rounds ⇒ price level record high (e.g. Vodafone paying 160USD per person for 2x15MHz)
- In Germany, 12 blocks (2x5MHz), 4 incumbents, and 4-6 possible winners  $\Rightarrow$  173 rounds  $\Rightarrow$  6 winners a 2x10MHz with record prices



## **UMTS** Auctions

Revenues from European 3G Mobile Spectrum Auctions, euros per capita:

| Year 2000      |     | Year 2001 |    |  |
|----------------|-----|-----------|----|--|
| Austria        | 100 | Belgium   | 45 |  |
| Germany        | 615 | Denmark   | 95 |  |
| Italy          | 240 | Greece    | 45 |  |
| Netherlands    | 170 |           |    |  |
| Switzerland    | 20  |           |    |  |
| United Kingdom | 650 |           |    |  |

- Auction revenue varies significantly due to context sensitivity of auction design
- UMTS auction revenues decreasing over time
  - international operators running out of money
  - change in the perceived value of licences



### References

- Courcoubetis, C. & Weber, R., 2003. Pricing Communication Networks. West Sussex: Wiley.
- ITU, 2007. ICT Regulation Toolkit. Available at: http://www.ictregulationtoolkit.org
- The World Bank, 2000. Telecommunications Regulation Handbook. Available at: <u>http://rru.worldbank.org/Toolkits/TelecomsRegulation/</u>
- Staple, G., Werbach, K., 2004. The end of spectrum scarcity. IEEE Spectrum 2004. Vol 41, No. 3, March 2004.
- EU radio spectrum policy web site: Available at: <u>http://ec.europa.eu/information\_society/policy/radio\_spectrum/index\_e</u> <u>n.htm</u>



### Exam

- The first exam will be held on Wednesday May 7 at 9:00-12:00 in hall S4.
- List of possible questions available at the course web pages
- Core readings:
  - Lecture slides
  - Book "Pricing communications networks"



# (Example exam)