HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Communications and Networking
S-38.3141 Teletraffic Theory, IV/2008

Exercise 4

14.4.2008

Virtamo / Penttinen

1. The output port of an ATM switch carries 4 constant bit rate virtual channel connections. The speed of the link is $155 \mathrm{Mbit} / \mathrm{s}$ and the bit rate (net information rate) of each connection is 24 Mbit/s. The information is packed into the 48 octet (byte) length payload of the cell, which additionally has a header of 5 octets. Using the $N * D / D / 1$ model calculate the probability that there are at least n cells in the output buffer of the port for the values $n=0, \ldots, 4$.
2. Cells arrive to a modulated $N * D / D / 1$ queue from three different sources. In each of the streams the cell interarrival time is 5 (cell transmission times) when the burst is active. The activity probabilities of the sources are $0.5,0.4$ and 0.2 . Calculate the probabilities that there are n cells, $n=0, \ldots, 3$ in the queue.
3. Let the unfinished work in a queue, X, measured in the time it takes to serve the work (also called the virtual waiting time), have the tail distribution $Q(x)=\mathrm{P}\{X>x\}$. Denote the actual waiting time of random customer by W and its tail distribution by $W(x)=\mathrm{P}\{W>x\}$. Justify the following: a) in an $M / D / 1$ queue it holds that $W(x)=Q(x)$, b) in an $N * D / D / 1$ queue it holds that $W_{N}(x)=Q_{N-1}(x)$, where the subscript refers to the number of sources in the system.
4. Customers arrive at an M/D/1 queue with Poissonian rate λ, each customer bringing an amount d of work in the queue. The server has rate C and thus the load of the system is $\rho=\lambda d / C$. The tail distribution of the unfinished work X in the queue is known to be asymptotically of exponential form $G(x)=\mathrm{P}\{X>x\}=A e^{-k x}$, where A and k are some constants. Derive an equation for k by writing the balance condition of the probability flows across a surface at level $x(x \gg d)$. Hint: 1) as the server is discharging the queue, the probability mass with density $-G^{\prime}(x)$ at point x flows at rate C downwards, 2) every arrival that finds the system in a state X with $x-d<X \leq x$ transfers a probability mass of 1 across the surface. Solve the equation for k when $\rho=0.5$.
5. Determine the twisted distribution and its mean and variance for a random variable X, which obeys
a) $\operatorname{Binomial}$ distribution $\operatorname{Bin}(N, p)$,
b) Poisson distribution Poisson (a).
6. The bit rate produced by a traffic source varies as follows: 50% of the time $0 \mathrm{kbit} / \mathrm{s}, 30 \%$ of the time $100 \mathrm{kbit} / \mathrm{s}$ and 20% of the time $300 \mathrm{kbit} / \mathrm{s}$. How many sources of this type can be multiplexed on link with capacity $2 \mathrm{Mbit} / \mathrm{s}$, when the allowed loss probability is $P_{\text {loss }} \leq 10^{-4}$? Thus, what is the effective bandwidth of one source in this setting? Compare with the mean and peak rates. Hint: Use the approximation formula at the bottom of page 17 of the lectures.
