Fairness

Maxmin fairness

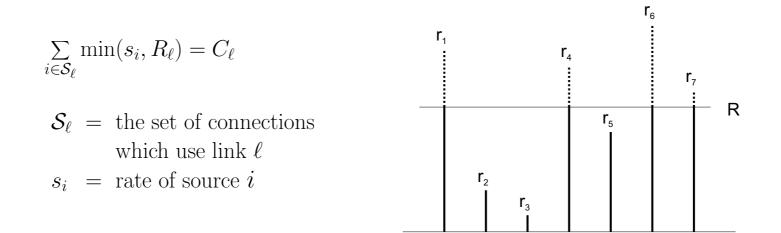
- An important consideration in 'best effort' type services
 - no quantitative QoS guarantees are given
 - all must receive service on a fair ground
- The \underline{maxmin} definition of fairness

A fair service maximizes the service of the customer receiving the poorest service

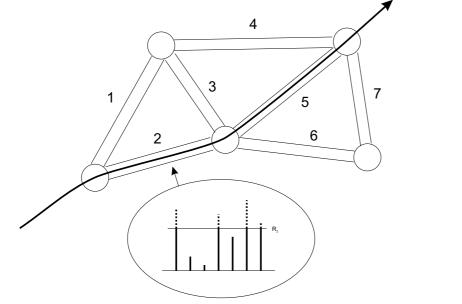
- In general, this does not define uniquely the resource sharing
 - if there are still some degrees of freedom left, one continues by maximizing the level of service of the customer receiving second poorest service etc.
- In the fair share each customer *either*
 - gets the service requested or
 - allocating more resource to the customer would worsen the service of some customer receiving the same level or poorer service
 - i.e. it is not possible to improve any body's service only at the expense of customers receiving better service

Maxmin fairness (continued)

- Consider connections for which link ℓ is the bottleneck link
 - in case of fair share, the rates of these connections are equal
 - otherwise, the rate of the slowest connection could be increased by giving it more bandwidth from the faster connections
 - they have a common 'roof' R_{ℓ}



Maxmin fairness in a multinode network



$$\sum_{i \in \mathcal{S}_{\ell}} \min(r_i^{(\ell)}, R_{\ell}) = C_{\ell}, \ \forall \ell$$
$$r_i^{(\ell)} = \min_{\ell' \in \mathcal{L}_i - \{\ell\}} (R_{\ell'}, s_i)$$

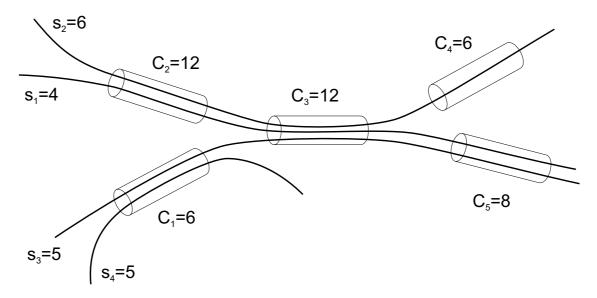
 $\begin{cases} \mathcal{S}_{\ell} = & \text{the set of connections that use link } \ell \\ \mathcal{L}_{i} = & \text{the set of links used by connection } i \\ r_{i}^{(\ell)} = & \text{the rate at which source } i \text{ 'would like' to send on the link } \ell \\ r_{i} = & \min_{\ell' \in \mathcal{L}_{i}} (R_{\ell'}, s_{i}) = & \min_{\ell' \in \mathcal{L}_{i}} r_{i}^{(\ell)} \quad \text{the rate allocated to source } i \end{cases}$

Finding maxmin fair share ("filling algorithm")

- 1. In the beginning set the rates of all connections to zero, $r_i = 0, \forall i$
- 2. Increase all rates (equally) until either
 - some of the sources has attained the requested rate $\,or$
 - the capacity of some link is fully used
- 3. 'Freeze' the rate of this connection / rates of these connections at the current level and continue increasing the rates of other connections as in point 2
- This algorithm requires centralized knowledge of the whole network
- There are also decentralized versions of this algorithm (e.g. for the ABR service in an ATM network), where the sources and switches exchange information

- after a few iterations these algorithms converge to the fair share

Example of a maxmin fair share in a network



connection	1	2	3	4	Note
s_i	4	6	5	5	the requested rate
round					
0	0	0	0	0	
1	1	1	1	1	
2	2	2	2	2	
3	3	3	<u>3</u>	<u>3</u>	link 1 full
4	<u>4</u>	4			requested rate of source 1
5		<u>5</u>			link 3 full

- In this example the rate increase has been made in increments of one unit
- In reality, the increase must done in a continuous manner
 - it is easy to figure out, which limit is next encountered

Formal definition of maxmin fairness

The previous considerations can be set in a more precise mathematical form:

<u>Definition 1:</u> A rate vector of the connections $\mathbf{r} = \{r_i \mid i \in \mathcal{S}\}$ is <u>feasible</u>, if

$$0 \le r_i \le s_i \quad \forall i$$
$$\sum_{i \in \mathcal{S}_\ell} r_i \le C_\ell \quad \forall \ell$$

<u>Definition 2</u>: The rate vector \mathbf{r} is maxmin fair, if it is feasible and if for each connection iand for each feasible rate vector $\hat{\mathbf{r}}$ for which $\hat{r}_i > r_i$, there is another connection j such that $r_j \leq r_i$ and $\hat{r}_j < r_j$

<u>Definition 3:</u> For a given feasible rate vector \mathbf{r} link ℓ is a <u>bottleneck link</u> for connection $i \in S_{\ell}$, if $\sum_{k \in S_{\ell}} r_k = C_{\ell}$ and $r_j \leq r_i \ \forall j \in S_{\ell}$

One can show that from these definitions it follows

<u>Proposition 1:</u> A feasible rate vector \mathbf{r} is maxmin fair if and only if for each connection i some link is a bottleneck or $r_i = s_i$

Proposition 2: The maxmin fair rate vector \mathbf{r} is unique

Utility based fairness definitions

- Maxmin fairness is the "classical" and best-known fairness concept
 - in the case of a single link an equal share of the bandwidth is obviously fair
 - in the network context a universal definition what is fair is far less obvious
 - maxmin fairness, while it can be arguably justified, is just one possible definition
- Other definitions have also been proposed
- So-called utility based fairness criteria encompass many possible definitions

– maxmin fairness is a special case of utility based criteria

- The idea is to define a <u>utility function</u> $U(x_r)$ describing the utility a user (flow) on route r gets from the network if his capacity share is x_r
- The objective then is to maximize the total utility of all the users

$$U = \sum_{r \in \mathcal{R}} n_r U(x_r)$$

where \mathcal{R} is the set of all routes and n_r is the number of users (flows) on route r

Utility based fairness definitions (continued)

• Fair capacity sharing according to the utility criterion can now be defined as the solution of the optimization problem

$$\begin{cases} \max & \sum_{r \in \mathcal{R}} n_r U(x_r) \\ \text{subject to} & Ax \leq C \\ \text{over} & x \geq 0. \end{cases}$$

where

$$x = \{x_r, r \in \mathcal{R}\}$$
 the vector of flow numbers on different routes

$$C = \{C_j, j \in \mathcal{J}\}$$
 the vector of link capacities,

$$A = \{a_{jr}, j \in \mathcal{J}, r \in \mathcal{R}\}$$
 the link-route incidence matrix;

$$a_{jr} \text{ is equal to } n_r \text{ if route } r \text{ uses link } j \text{ and } 0 \text{ otherwise.}$$

Utility based fairness definitions (continued)

• A reasonable and rather general choice for the utility function is

$$U(x) = \frac{x^{1-\alpha}}{1-\alpha}$$

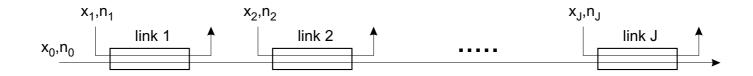
where α is a free parameter

• Specific choices for α lead to the following important special cases

α	concept	$\max_{x} \sum_{\mathcal{R}} n_r U_r(x_r)$
0	maximize overall throughput	$\max_{x} \sum_{\mathcal{R}} n_r x_r$
1	proportional fairness	$\max_{x} \sum_{\mathcal{R}}^{\mathcal{K}} n_r \log x_r$
2	minimize potential delay	$\min_{x} \sum_{\mathcal{R}}^{\mathcal{R}} \frac{n_r}{x_r}$
∞	max min fairness	$\max_{x} \min_{r \in \mathcal{R}} x_r$

• Small values of α favour the common (network) utility at the expense of individuals; larger values of α emphasize the fairness towards the poorest guy.

Example: Utility based fairness in linear network



• The flow on the long route is indexed by 0; the flows on the short routes are indexed by the respective link number; all links have capacity 1

α	concept	x_0
0	maximize overall throughput	0
1	proportional fairness	$\frac{1}{n_0 + \sum_j n_j}$
2	minimize potential delay	$\frac{1}{n_0 + \sqrt{\sum_j n_j^2}}$
∞	maxmin fairness	$\frac{1}{n_0 + \max_{j \ge 1} n_j}$

• As α increases from 0 to ∞ , the different allocations give relatively more bandwidth to long routes