Birth-death processes

General

A birth-death (BD process) process refers to a Markov process with

- a discrete state space
- the states of which can be enumerated with index $i=0,1,2, \ldots$ such that
- state transitions can occur only between neighbouring states, $i \rightarrow i+1$ or $i \rightarrow i-1$

Transition rates

$$
q_{i, j}=\left\{\begin{array}{lll}
\lambda_{i} & \text { when } & j=i+1 \\
\mu_{i} & \text { if } & j=i-1 \\
0 & \text { otherwise } &
\end{array}\right.
$$

probability of birth in interval Δt is $\lambda_{i} \Delta t$ probability of death in interval Δt is $\mu_{i} \Delta t$ when the system is in state i

The equilibrium probabilities of a $B D$ process

We use the method of a cut $=$ global balance condition applied on the set of states $0,1, \ldots, k$.
In equilibrium the probability flows across the cut are balanced (net flow $=0$)

$$
\lambda_{k} \pi_{k}=\mu_{k+1} \pi_{k+1} \quad k=0,1,2, \ldots
$$

We obtain the recursion

$$
\pi_{k+1}=\frac{\lambda_{k}}{\mu_{k+1}} \pi_{k}
$$

By means of the recursion, all the state probabilities can be expressed in terms of that of the state $0, \pi_{0}$,

$$
\pi_{k}=\frac{\lambda_{k-1} \lambda_{k-2} \cdots \lambda_{0}}{\mu_{k} \mu_{k-1} \cdots \mu_{1}} \pi_{0}=\prod_{i=0}^{k-1} \frac{\lambda_{i}}{\mu_{i+1}} \pi_{0}
$$

The probability π_{0} is determined by the normalization condition π_{0}

$$
\pi_{0}=\frac{1}{1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}}+\cdots}=\frac{1}{1+\sum_{k=1}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_{i}}{\mu_{i+1}}}
$$

The time-dependent solution of a BD process

Above we considered the equilibrium distribution $\boldsymbol{\pi}$ of a BD process.
Sometimes the state probabilities at time $0, \boldsymbol{\pi}(0)$, are known

- usually one knows that the system at time 0 is precisely in a given state k; then $\pi_{k}(0)=1$ and $\pi_{j}(0)=0$ when $j \neq k$
and one wishes to determine how the state probabilities evolve as a function of time $\boldsymbol{\pi}(t)$
- in the limit we have $\lim _{t \rightarrow \infty} \boldsymbol{\pi}(t)=\boldsymbol{\pi}$.

This is determined by the equation

$$
\frac{d}{d t} \boldsymbol{\pi}(t)=\boldsymbol{\pi}(t) \cdot \mathbf{Q} \quad \text { where }
$$

$$
\mathbf{Q}=\left(\begin{array}{ccccc}
-\lambda_{0} & \lambda_{0} & 0 & \ldots & \cdots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & \ldots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 \\
\vdots & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} \\
\vdots & \vdots & 0 & \mu_{4} & -\left(\lambda_{4}+\mu_{4}\right)
\end{array}\right)
$$

The time-dependent solution of a BD process (continued)

The equations component wise

$$
\left\{\begin{array}{l}
\frac{d \pi_{i}(t)}{d t}=\underbrace{-\left(\lambda_{i}+\mu_{i}\right) \pi_{i}(t)}_{\text {flows out }}+\underbrace{\lambda_{i-1} \pi_{i-1}(t)+\mu_{i+1} \pi_{i+1}(t)}_{\text {flows in }} \quad i=1,2, \ldots \\
\frac{d \pi_{0}(t)}{d t}=\underbrace{-\lambda_{0} \pi_{0}(t)}_{\text {flow out }}+\underbrace{\mu_{1} \pi_{1}(t)}_{\text {flow in }}
\end{array}\right.
$$

Example 1. Pure death process

$$
\left\{\begin{array}{ll}
\lambda_{i}=0 \\
\mu_{i}=i \mu
\end{array} \quad i=0,1,2, \ldots \quad \pi_{i}(0)= \begin{cases}1 & i=n \\
0 & i \neq n\end{cases}\right.
$$

all individuals have the same
the system starts from state n mortality rate μ

State 0 is an absorbing state, other states are transient

$$
\begin{aligned}
& \begin{cases}\frac{d}{d t} \pi_{n}(t)=-n \mu \pi_{n}(t) & \Rightarrow \pi_{n}(t)=e^{-n \mu t} \\
\frac{d}{d t} \pi_{i}(t)=(i+1) \mu \pi_{i+1}(t)-i \mu \pi_{i}(t) & i=0,1, \ldots, n-1\end{cases} \\
& \frac{d}{d t}\left(e^{i \mu t} \pi_{i}(t)\right)=(i+1) \mu \pi_{i+1}(t) e^{i \mu t} \Rightarrow \\
& \pi_{n-1}(t)=n e^{-(n-1) \mu t} \mu \int_{0}^{t} \underbrace{e^{-n \mu t^{\prime}} e^{(n-1) \mu t^{\prime}}}_{e^{-\mu t^{\prime}}} d t^{\prime}=n e^{-(n-1) \mu t}\left(1-e^{-\mu t}\right)
\end{aligned}
$$

Recursively

$$
\pi_{i}(t)=\binom{n}{i}\left(e^{-\mu t}\right)^{i}\left(1-e^{-\mu t}\right)^{n-i}
$$

Binomial distribution: the survival probability at time t is $e^{-\mu t}$ independent of others

Example 2. Pure birth process (Poisson process)

$$
\left\{\begin{array}{ll}
\lambda_{i}=\lambda \\
\mu_{i}=0
\end{array} \quad i=0,1,2, \ldots \quad \pi_{i}(0)= \begin{cases}1 & i=0 \\
0 & i>0\end{cases}\right.
$$

birth probability per time unit is initially the population size is 0 constant λ

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\frac{d}{d t} \pi_{i}(t)=-\lambda \pi_{i}(t)+\lambda \pi_{i-1}(t) & & i>0 \\
\frac{d}{d t} \pi_{0}(t)=-\lambda \pi_{0}(t) & & \Rightarrow \pi_{0}(t)=e^{-\lambda t}
\end{array}\right. \\
& \frac{d}{d t}\left(e^{\lambda t} \pi_{i}(t)\right)=\lambda \pi_{i-1}(t) e^{\lambda t} \quad \Rightarrow \quad \pi_{i}(t)=e^{-\lambda t} \lambda \int_{0}^{t} \pi_{i-1}\left(t^{\prime}\right) e^{\lambda t^{\prime}} d t^{\prime} \\
& \pi_{1}(t)=e^{-\lambda t} \lambda \int_{0}^{t} \underbrace{e^{-\lambda t^{\prime}} e^{\lambda t^{\prime}}}_{1} d t^{\prime}=e^{-\lambda t}(\lambda t)
\end{aligned}
$$

Recursively $\quad \pi_{i}(t)=\frac{(\lambda t)^{i}}{i!} e^{-\lambda t} \quad$ Number of births in interval $(0, t) \sim \operatorname{Poisson}(\lambda t)$

Example 3. A single server system

$$
\begin{aligned}
& \mu \\
& \text { - constant arrival rate } \lambda \text { (Poisson arrivals) } \\
& \text { - stopping rate of the service } \mu \text { (exponential distribution) } \\
& \text { The states of the system } \\
& \begin{cases}0 & \text { server free } \\
1 & \text { server busy }\end{cases} \\
& \sim \operatorname{Exp}(\mu) \sim \operatorname{Exp}(\lambda) \\
& \left\{\begin{array}{l}
\frac{d}{d t} \pi_{0}(t)=-\lambda \pi_{0}(t)+\mu \pi_{1}(t) \\
\frac{d}{d t} \pi_{1}(t)=\lambda \pi_{0}(t)-\mu \pi_{1}(t)
\end{array}\right. \\
& \mathbf{Q}=\left(\begin{array}{cc}
-\lambda & \lambda \\
\mu & -\mu
\end{array}\right) \\
& \text { BY adding both sides of the equations } \\
& \frac{d}{d t}\left(\pi_{0}(t)+\pi_{1}(t)\right)=0 \quad \Rightarrow \quad \pi_{0}(t)+\pi_{1}(t)=\text { constant }=1 \quad \Rightarrow \quad \pi_{1}(t)=1-\pi_{0}(t) \\
& \frac{d}{d t} \pi_{0}(t)+(\lambda+\mu) \pi_{0}(t)=\mu \quad \Rightarrow \quad \frac{d}{d t}\left(e^{(\lambda+\mu) t} \pi_{0}(t)\right)=\mu e^{(\lambda+\mu) t} \\
& \pi_{0}(t)=\frac{\mu}{\lambda+\mu}+\left(\pi_{0}(0)-\frac{\mu}{\lambda+\mu}\right) e^{-(\lambda+\mu) t} \\
& \pi_{1}(t)=\frac{\lambda}{\lambda+\mu}+\left(\pi_{1}(0)-\frac{\lambda}{\lambda+\mu}\right) e^{-(\lambda+\mu) t} \\
& \underbrace{}_{\text {equilibrium }} \underbrace{\text { decays }}_{\text {deviation from }} \underbrace{}_{\text {expo- }} \\
& \text { distribution the equilibrium nentially }
\end{aligned}
$$

Summary of the analysis on Markov processes

1. Find the state description of the system

- no ready recipe
- often an appropriate description is obvious
- sometimes requires more thinking
- a system may Markovian with respect to one state description but non-Markovian with respect to another one (the state information is not sufficient)
- finding the state description is the creative part of the problem

2. Determine the state transition rates

- a straight forward task when holding times and interarrival times are exponential

3. Solve the balance equations

- in principle straight forward (solution of a set of linear equations)
- the number of unknowns (number of states) can be very great
- often the special structure of the transition diagram can be exploited

Global balance

 \(n+1\) states
 \(n+1\) states

flow to state $i \quad$ flow out of state i
$i=0,1, \ldots, n$
one equation per each state
$\overbrace{\left(\pi_{0}, \ldots, \pi_{n}\right)}^{\boldsymbol{\pi}} \overbrace{\left(\begin{array}{ccccc}-\sum_{j} q_{0, j} & q_{0,1} & q_{0,2} & \ldots & q_{0, n} \\ q_{1,0} & -\sum_{j} q_{1, j} & q_{1,2} & \ldots & q_{1, n} \\ q_{2,0} & q_{2,1} & -\sum_{j} q_{2, j} & \ldots & q_{2, n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{n, 0} & q_{n, 1}, & q_{n, 2}, & \ldots & -\sum_{j} q_{n, j}\end{array}\right)}^{\mathbf{Q}}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0\end{array}\right)$

$$
\boldsymbol{\pi} \cdot \mathrm{Q}=0
$$

one equation is redundant

$$
\pi_{0}+\pi_{1}+\cdots+\pi_{n}=1
$$

normalization condition

Example 1. A queueing system

s palvelinta

The number of customers in system N is an appropriate state variable

- uniquely determines the number of customers in service and in waiting room
- after each arrival and departure the remaining service times of the customers in service are $\operatorname{Exp}(\mu)$ distributed (memoryless)

Example 2. Call blocking in an ATM network

A virtual path (VP) of an ATM network is offered calls of two different types.

$$
\left\{\begin{array} { l }
{ R _ { 1 } = 1 \mathrm { Mbps } } \\
{ \lambda _ { 1 } = \text { arrival rate } } \\
{ \mu _ { 1 } = \text { mean holding time } }
\end{array} \quad \left\{\begin{array}{l}
R_{2}=2 \mathrm{Mbps} \\
\lambda_{2}=\text { arrival rate } \\
\mu_{2}=\text { mean holding time }
\end{array}\right.\right.
$$

a) The capacity of the link is large (infinite)

The state variable of the Markov process in this example is the pair $\left(N_{1}, N_{2}\right)$, where N_{i} defines the number of class- i connections in progress.

Call blocking in an ATM network (continued)
b) The capacity of the link is 4.5 Mbps

