CONTINUOUS DISTRIBUTIONS

Laplace transform (Laplace-Stieltjes transform)

Definition

The Laplace transform of a non-negative random variable $X \geq 0$ with the probability density function f(x) is defined as

$$f^*(s) = \int_0^\infty e^{-st} f(t) dt = E[e^{-sX}] = \int_0^\infty e^{-st} dF(t)$$
 also denoted as $\mathcal{L}_X(s)$

- Mathematically it is the Laplace transform of the pdf function.
- In dealing with continuous random variables the Laplace transform has the same role as the generating function has in the case of discrete random variables.
 - if X is a discrete integer-valued (≥ 0) r.v., then $f^*(s) = \mathcal{G}(e^{-s})$

Laplace transform of a sum

Let X and Y be independent random variables with L-transforms $f_X^*(s)$ and $f_Y^*(s)$.

$$f_{X+Y}^*(s) = \mathbb{E}[e^{-s(X+Y)}]$$

 $= \mathbb{E}[e^{-sX}e^{-sY}]$
 $= \mathbb{E}[e^{-sX}]\mathbb{E}[e^{-sY}]$ (independence)
 $= f_X^*(s)f_Y^*(s)$

$$f_{X+Y}^*(s) = f_X^*(s) f_Y^*(s)$$

Calculating moments with the aid of Laplace transform

By derivation one sees

$$f^{*'}(s) = \frac{d}{ds} E[e^{-sX}] = E[-Xe^{-sX}]$$

Similarly, the n^{th} derivative is

$$f^{*(n)}(s) = \frac{d^n}{ds^n} E[e^{-sX}] = E[(-X)^n e^{-sX}]$$

Evaluating these at s = 0 one gets

$$E[X] = -f^{*'}(0)$$
 $E[X^{2}] = +f^{*''}(0)$
 \vdots
 $E[X^{n}] = (-1)^{n} f^{*(n)}(0)$

Laplace transform of a random sum

Consider the random sum

$$Y = X_1 + \cdots + X_N$$

where the X_i are *i.i.d.* with the common L-transform $f_X^*(s)$ and $N \geq 0$ is a integer-valued r.v. with the generating function $\mathcal{G}_N(z)$.

$$f_Y^*(s) = \mathbb{E}[e^{-sY}]$$

 $= \mathbb{E}[\mathbb{E}\left[e^{-sY} \mid N\right]]$ (outer expectation with respect to variations of N)
 $= \mathbb{E}[\mathbb{E}\left[e^{-s(X_1 + \dots + X_N)} \mid N\right]]$ (in the inner expectation N is fixed)
 $= \mathbb{E}[\mathbb{E}[e^{-s(X_1)}] \cdots \mathbb{E}[e^{-s(X_N)}]]$ (independence)
 $= \mathbb{E}[(f_X^*(s))^N]$
 $= \mathcal{G}_N(f_X^*(s))$ (by the definition $\mathbb{E}[z^N] = \mathcal{G}_N(z)$)

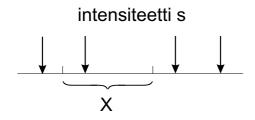
Laplace transform and the method of collective marks

We give for the Laplace transform

$$f^*(s) = E[e^{-sX}], \quad X \ge 0,$$
 the following

Interpretation: Think of X as representing the length of an interval. Let this interval be subject to a Poissonian marking process with intensity s. Then the Laplace transform $f^*(s)$ is the probability that there are no marks in the interval.

P{X has no marks} = E[P{X has no marks | X}] (total probability)
= E[P{the number of events in the interval X is
$$0 | X$$
}]
= E[e^{-sX}] = $f^*(s)$



P{there are *n* events in the interval $X \mid X$ } = $\frac{(sX)^n}{n!}e^{-sX}$

P{the number of events in the interval X is 0 | X} = e^{-sX}

Method of collective marks (continued)

Example: Laplace transform of a random sum

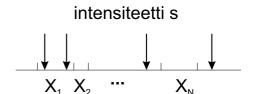
$$Y = X_1 + \dots + X_N$$
, where
$$\begin{cases} X_1 \sim X_2 \sim \dots \sim X_N, \text{ common L-transform } f^*(s) \\ N \text{ is a r.v. with generating function } \mathcal{G}_N(z) \end{cases}$$

$$f_Y^*(s) = P\{\text{none of the subintervals of } Y \text{ is marked}\}$$

$$= \mathcal{G}_N(\underbrace{f_X^*(s)}_{\text{probability that a}})$$

$$= \underbrace{\text{probability that a}}_{\text{has no marks}}$$

$$= \underbrace{\text{probability that none of the subintervals is marked}}$$

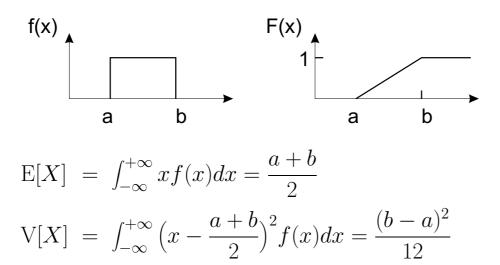


Uniform distribution $X \sim \mathrm{U}(a,b)$

The pdf of X is constant in the interval (a, b):

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{elsewhere} \end{cases}$$

i.e. the value X is drawn randomly in the interval (a, b).



Uniform distribution (continued)

Let U_1, \ldots, U_n be independent uniformly distributed random variables, $U_i \sim U(0, 1)$.

- The number of variables which are $\leq x \ (0 \leq x \leq 1)$ is $\sim \text{Bin}(n, x)$
 - the event $\{U_i \leq x\}$ defines a Bernoulli trial where the probability of success is x
- Let $U_{(1)}, \ldots, U_{(n)}$ be the ordered sequence of the values.

Define further $U_{(0)} = 0$ and $U_{(n+1)} = 1$.

It can be shown that all the intervals are identically distributed and

$$P\{U_{(i+1)} - U_{(i)} > x\} = (1-x)^n \qquad i = 1, \dots, n$$

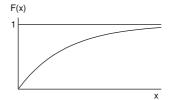
– for the first interval $U_{(1)} - U_{(0)} = U_{(1)}$ the result is obvious because $U_{(1)} = \min(U_1, \dots, U_n)$

Exponential distribution $X \sim \text{Exp}(\lambda)$

(Note that sometimes the shown parameter is $1/\lambda$, i.e. the mean of the distribution)

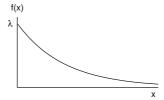
X is a non-negative continuous random variable with the cdf

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$



and pdf

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$



Example: interarrival time of calls; holding time of call

Laplace transform and moments of exponential distribution

The Laplace transform of a random variable with the distribution $\text{Exp}(\lambda)$ is

$$f^*(s) = \int_0^\infty e^{-st} \cdot \lambda e^{-\lambda t} dt = \frac{\lambda}{\lambda + s}$$

With the aid of this one can calculate the moments:

$$E[X] = -f^{*'}(0) = \frac{\lambda}{(\lambda+s)^2}\Big|_{s=0} = \frac{1}{\lambda}$$

$$E[X^2] = +f^{*''}(0) = \frac{2\lambda}{(\lambda+s)^3}\Big|_{s=0} = \frac{2}{\lambda^2}$$

$$V[X] = E[X^2] - E[X]^2 = \frac{1}{\lambda^2}$$

$$E[X] = \frac{1}{\lambda}$$
 $V[X] = \frac{1}{\lambda^2}$

The memoryless property of exponential distribution

Assume that $X \sim \text{Exp}(\lambda)$ represents e.g. the duration of a call.

What is the probability that the call will last at least time x more given that it has already lasted the time t:

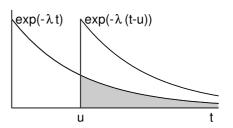
$$P\{X > t + x | X > t\} = \frac{P\{X > t + x, X > t\}}{P\{X > t\}}$$

$$= \frac{P\{X > t + x\}}{P\{X > t\}}$$

$$= \frac{e^{-\lambda(t+x)}}{e^{-\lambda t}} = e^{-\lambda x} = P\{X > x\}$$

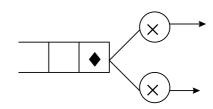
$$P{X > t + x | X > t} = P{X > x}$$

- The distribution of the remaining duration of the call does not at all depend on the time the call has already lasted
- Has the same $\text{Exp}(\lambda)$ distribution as the total duration of the call.



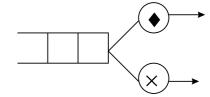
Example of the use of the memoryless property

A queueing system has two servers. The service times are assumed to be exponentially distributed (with the same parameter). Upon arrival of a customer (\diamond) both servers are occupied (\times) but there are no other waiting customers.



The question: what is the probability that the customer (\$\\$) will be the last to depart from the system?

The next event in the system is that either of the customers (\times) being served departs and the customer enters (\diamond) the freed server.



By the memoryless property, from that point on the (remaining) service times of both customers (\diamond) and (\times) are identically (exponentially) distributed.

The situation is completely symmetric and consequently the probability that the customer (\diamond) is the last one to depart is 1/2.

The ending probability of an exponentially distributed interval

Assume that a call with $\text{Exp}(\lambda)$ distributed duration has lasted the time t. What is the probability that it will end in an infinitesimal interval of length h?

$$P\{X \le t + h \mid X > t\} = P\{X \le h\} \text{ (memoryless)}$$
$$= 1 - e^{-\lambda h}$$
$$= 1 - (1 - \lambda h + \frac{1}{2}(\lambda h)^2 - \cdots)$$
$$= \lambda h + o(h)$$

The ending probability per time unit = λ (constant!)

The minimum and maximum of exponentially distributed random variables

Let
$$X_1 \sim \cdots \sim X_n \sim \text{Exp}(\lambda)$$
 (i.i.d.)

The tail distribution of the minimum is

$$P\{\min(X_1, \dots, X_n) > x\} = P\{X_1 > x\} \dots P\{X_n > x\}$$
 (independence)
$$= (e^{-\lambda x})^n = e^{-n\lambda x}$$

The minimum obeys the distribution $\text{Exp}(n\lambda)$.

The ending intensity of the minimum $= n\lambda$

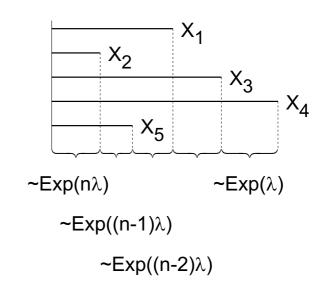
n parallel processes each of which ends with intensity λ independent of the others

The cdf of the maximum is

$$P\{\max(X_1, \dots, X_n) \le x\} = (1 - e^{-\lambda x})^n$$

The expectation can be deduced by inspecting the figure

$$E[\max(X_1,\ldots,X_n)] = \frac{1}{n\lambda} + \frac{1}{(n-1)\lambda} + \cdots + \frac{1}{\lambda}$$



Erlang distribution $X \sim \text{Erlang}(n, \lambda)$ Also denoted Erlang- $n(\lambda)$.

X is the sum of n independent random variables with the distribution $\text{Exp}(\lambda)$

$$X = X_1 + \dots + X_n$$
 $X_i \sim \text{Exp}(\lambda)$ (i.i.d.)

The Laplace transform is

$$f^*(s) = (\frac{\lambda}{\lambda + s})^n$$

By inverse transform (or by recursively convoluting the density function) one obtains the pdf of the sum X

$$f(x) = \frac{(\lambda x)^{n-1}}{(n-1)!} \lambda e^{-\lambda x} \qquad x \ge 0$$

Erlang distribution (continued): gamma distribution

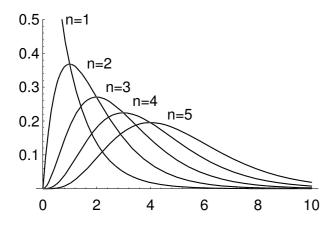
The formula for the pdf of the Erlang distribution can be generalized, from the integer parameter n, to arbitrary real numbers by replacing the factorial (n-1)! by the gamma function $\Gamma(n)$:

$$f(x) = \frac{(\lambda x)^{p-1}}{\Gamma(p)} \lambda e^{-\lambda x}$$

 $\operatorname{Gamma}(p,\lambda)$ distribution

Gamma function $\Gamma(p)$ is defined by

$$\Gamma(p) = \int_0^\infty e^{-u} u^{p-1} du$$



By partial integration it is easy to see that when p is an integer then, indeed, $\Gamma(p) = (p-1)!$

The expectation and variance are n times those of the $\text{Exp}(\lambda)$ distribution:

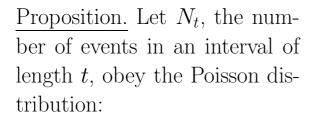
$$E[X] = \frac{n}{\lambda}$$
 $V[X] = \frac{n}{\lambda^2}$

~Erlang(2,λ)

Erlang distribution (continued)

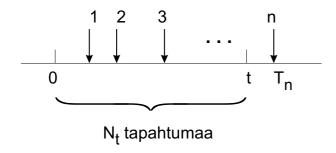
Example. The system consists of two servers. Customers arrive with $\text{Exp}(\lambda)$ distributed interarrival times. Customers are alternately sent to servers 1 and 2.

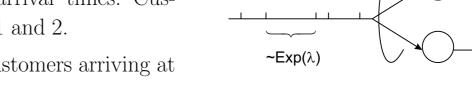
The interarrival time distribution of customers arriving at a given server is $Erlang(2, \lambda)$.



$$N_t \sim \text{Poisson}(\lambda t)$$

Then the time T_n from an arbitrary event to the n^{th} event thereafter obeys the distribution $Erlang(n, \lambda)$.





$$\frac{\text{pof.}}{F_{T_n}(t)} = P\{T_n \le t\} = P\{N_t \ge n\}$$

$$= \sum_{i=n}^{\infty} P\{N_t = i\} = \sum_{i=n}^{\infty} \frac{(\lambda t)^i}{i!} e^{-\lambda t}$$

$$f_{T_n} = \frac{d}{dt} F_{T_n}(t) = \sum_{i=n}^{\infty} \frac{i\lambda (\lambda t)^{i-1}}{i!} e^{-\lambda t} - \sum_{i=n}^{\infty} \frac{(\lambda t)^i}{i!} \lambda e^{-\lambda t}$$

$$= \sum_{i=n}^{\infty} \frac{(\lambda t)^{i-1}}{(i-1)!} \lambda e^{-\lambda t} - \sum_{i=n}^{\infty} \frac{(\lambda t)^i}{i!} \lambda e^{-\lambda t}$$

$$= \frac{(\lambda t)^{n-1}}{(n-1)!} \lambda e^{-\lambda t}$$

Normal distribution $X \sim \mathrm{N}(\mu, \sigma^2)$

The pdf of a normally distributed random variable X with parameters μ ja σ^2 is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2}$$

Parameters μ and σ^2 are the expectation and variance of the distribution

$$\begin{cases} E[X] = \mu \\ V[X] = \sigma^2 \end{cases}$$

Proposition: If $X \sim N(\mu, \sigma^2)$, then $Y = \alpha X + \beta \sim N(\alpha \mu + \beta, \alpha^2 \sigma^2)$.

Proof:

$$F_Y(y) = P\{Y \le y\} = P\{X \le \frac{y-\beta}{\alpha}\} = F_X(\frac{y-\beta}{\alpha})$$

$$= \int_{-\infty}^{(y-\beta)/\alpha} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2} dx \qquad z = \alpha x + \beta$$

$$= \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}(\alpha\sigma)} e^{-\frac{1}{2}(z-(\alpha\mu+\beta))^2/(\alpha\sigma)^2} dz$$

Seuraus:
$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$
 $(\alpha = 1/\sigma, \beta = -\mu/\sigma)$

Denote the pdf of a N(0,1) random variable by $\Phi(x)$. Then

$$F_X(x) = P\{X \le x\} = P\{Z \le \frac{x-\mu}{\sigma}\} = \Phi(\frac{x-\mu}{\sigma})$$

Multivariate Gaussian (normal) distribution

Let X_1, \ldots, X_n be a set of Gaussian (i.e. normally distributed) random variables with expectations μ_1, \ldots, μ_n and covariance matrix

$$\mathbf{\Gamma} = \begin{pmatrix} \sigma_{11}^2 & \cdots & \sigma_{1n}^2 \\ \vdots & \ddots & \vdots \\ \sigma_{n1}^2 & \cdots & \sigma_{nn}^2 \end{pmatrix} \qquad \sigma_{ij}^2 = \operatorname{Cov}[X_i, X_j] \qquad (\sigma_{ii}^2 = V[X_i])$$

Denote $\mathbf{X} = (X_1, \dots, X_n)^{\mathrm{T}}$.

The probability density function of the random vector \mathbf{X} is

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Gamma}|}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Gamma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

where $|\Gamma|$ is the determinant of the covariance matrix.

By a change of variables one sees easily that the pdf of the random vector $\mathbf{Z} = \mathbf{\Gamma}^{-1/2}(\mathbf{X} - \boldsymbol{\mu})$ is $(2\pi)^{-n/2} \exp(-\frac{1}{2}\mathbf{z}^{\mathrm{T}}\mathbf{z}) = \sqrt{2\pi}e^{-z_1^2/2}\cdots\sqrt{2\pi}e^{-z_n^2/2}$.

Thus the components of the vector \mathbf{Z} are independent N(0,1) distributed random variables.

Conversely, $\mathbf{X} = \boldsymbol{\mu} + \mathbf{\Gamma}^{1/2} \mathbf{Z}$ by means of which one can generate values for \mathbf{X} in simulations.