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Markov processes (Continuous time Markov chains)

Consider (stationary) Markov processes with a continuous parameter space (the parameter

usually being time). Transitions from one state to another can occur at any instant of time.

• Due to the Markov property, the time the system spends in any given state is memoryless:

the distribution of the remaining time depends solely on the state but not on the time

already spent in the state ⇒ the time is exponentially distributed.

A Markov process Xt is completely determined by the so called generator matrix or transition rate matrix

qi,j = lim
∆t→0

P{Xt+∆t = j |Xt = i}

∆t
i 6= j

- probability per time unit that the system makes a transition from state i to state j

- transition rate or transition intensity

The total transition rate out of state i is

qi =
∑

j 6=i

qi,j | lifetime of the state ∼ Exp(qi)

This is the rate at which the probability of state i decreases. Define

qi,i = −qi
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Transition rate matrix and time dependent state probability vector

The transition rate matrix in full is

Q =









q0,0 q0,1 . . .

q1,0 q1,1 . . .
... ... . . .









=









−q0 q0,1 . . .

q1,0 −q1 . . .
... ... . . .









row sums equal zero:

the probability mass flowing out of state i

will go to some other states (is conserved)

State probability vector π(t) is now a function of time evolving as follows

d

dt
π(t) = π(t) ·Q ⇒ π(t + ∆t) = π(t) + π(t) ·Q ∆t + o(∆t) = π(t)(I + Q ∆t) + o(∆t)

Transition probability matrix over time interval ∆t is P(∆t) = I + Q ∆t

- tends to the identity matrix I as ∆t → 0

- Q = P′(0) is the time derivative of the transition prob. matrix (transition rate matrix)

A formal solution to the time dependent state probability vector is

π(t) = π(0) · eQ t
The matrix exponent function eA can be defined

by means of a power series: eA = I + A + 1
2!
A2 + · · ·
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Global balance conditions

The stationary solution π = limt→∞ π(t) is independent of time and thus satisfies

π · Q = 0

Global balance condition which expresses the balance of probability flows.

The jth row is

qj
︸︷︷︸

∑

i 6=j

qj,i

πj =
∑

i 6=j

πiqi,j

∑

i 6=j

πjqj,i =
∑

i 6=j

πiqi,j
πiqi,j = probability flow from state i to state j

(transition frequency from state i to state j)

j

i i

j

=

qj, i
qi, j

virrat ulos virrat sisään
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Global balance conditions (continued)

• The equations are linearly dependent: any given equation is automatically satisfied if the

other ones are satisfied (“conservation of probability”).

• The solution is unique up to a constant factor.

• The solution is uniquely determined by the normalization condition.

π · eT = 1 or
∑

j
πj = 1

• π is the (left) eigenvector belonging to the eigenvalue 0.

Global balance condition applies also to any set of states.

In stationarity, the probability flows between two sets constituting a partition of the state

space are in balance: Let Ω and Ω̄ be the complementary sets of the partition. Then

∑

i∈Ω,j∈Ω̄

πjqj,i =
∑

i∈Ω,j∈Ω̄

πiqi,j

W W
_
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Solving the balance equations

In the same way as in the case of a Markov chain the solution to the (homogeneous) balance

equation

π · Q = 0

satisfying the normalization condition π · eT = 1, is expediently obtained by writing n copies

of the normalization condition

π · E = e

where E is an n × n matrix with all elements equal to one, E =





1 1 . . . 1

.

.

.

.

.

.

.
.
.

.

.

.

1 1 . . . 1



 ,

by summing the equations, π · (Q+E) = e, and by solving the inhomogeneous equation thus

obtained

π = e · (Q + E)−1
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Embedded Markov chain

With every continuous time Markov process Xt we can associate a discrete time Markov chain,

so called embedded Markov chain or jump chain X(e)
n .

• Focus is on the transitions of Xt (when they occur), i.e. on the sequence of (different)

states visited by Xt.

• Let the state transitions of Xt occur at instants t0, t1, . . .

• Define X(e)
n to be the value of Xt immediately after the transition at time tn (at the

instant t+n ) or the value of Xt in (tn, tn+1).

X(e)
n = Xt+n

Since Xt is a Markov process, the embedded chain

X(e)
n constitutes a Markov chain.

t1 t2 t3 t4 t5 t6 t7

Xt

X1

(e) X2

(e)

X3

(e) X5

(e)

X6

(e)

X7

(e)

X4

(e)
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Embedded Markov chain (continued)

The states of a Markov process can be classified by the classification provided by the embedded

Markov chain (transient, absorbing, recurrent,. . . ).

The transition probabilities of the embedded chain

pi,j = lim
∆t→0

P{Xt+∆t = j |Xt+∆t 6= i, Xt = i}

= lim
∆t→0

P{Xt+∆t = j, Xt+∆t 6= i |Xt = i}

P{Xt+∆t 6= i |Xt = i}

=







qi,j
∑

j qi,j

i 6= j cf. P{min(X1, . . . , Xn) = Xi} = λi

λ1+···+λn
, when Xi ∼ Exp(λi)

0 i = j

a

b

a
a+b

b
a+b

Markov process, transition rates qi,j

equilibrium probabilities πi

Embedded Markov chain, transition probabilities pi,j

equilibrium probabilities π
(e)
i
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Equilibrium probabilities of the embedded Markov chain

πi =
π

(e)
i E[Ti]

∑

j
π

(e)
j E[Tj]

⇔ π
(e)
i =

πiqi
∑

j
πjqj

E[Ti] = 1/qi, qi =
∑

j 6=i

qi,j

πi = proportion of time that the Xt spends in state i (weight E[Ti])

π
(e)
i = relative frequency with which state i occurs in the jump chain X(e)

n (weight 1)

Note πiqi is the frequency with which the Markov chain Xt makes transitions out of state i.

In equilibrium, this equals the frequency with which the system jumps into state i.

• Now we have considered the sequence X(e)
n of all different states visited by Xt

• Sometimes it is possible to pick a subsequence of this chain which again is an embedded

Markov chain.

– later we will base the analysis of so called M/G/1 queue on the consideration of an

appropriately chosen embedded Markov chain (a subsequence of the full jump chain)
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Semi-Markov processes

Conversely, with every Markov chain Zn, n = 1, 2, . . . we can associate a continuous time

stochastic process Xt by drawing the time Ti spent by Xt in state i from some distribution

- every time the value is drawn independently

- different states can have different lifetime distributions

and then drawing the new state Zn according to the state transition probabilities.

The process Xt thus obtained is called a semi-Markov process

- generally is not a Markov process

- is a Markov process if and only if Ti ∼ Exp(λi)

- it has the same stationary distribution as the corresponding Markov process


