
18/09/2007 1

S-38.3148 Simulation of data networks / Generation of random variables

Theory

• Introduction to simulation

• Flow of simulation -- generating process realizations

• Random number generation from given distribution

– Introduction and generation of pseudo random numbers

– Different methods for generating random numbers with a given distribution

– Simulating the Poisson process

• Collection and analysis of simulation data

• Variance reduction techniques

18/09/2007 2

S-38.3148 Simulation of data networks / Generation of random variables

Drawing a random number from a given distribution

Generation of random variables is too important a task to be left for chance!

• Good statistics (i.e. obeys the distribution) and independence

– excludes “drawing from the hat”

• Repeatable sequence

– excludes real lottery or the use of physical random processes (such as radioactivity)

• Long sequence of different numbers

– excludes the use of precomputed tables

• Fast generation

– excludes the use of certain digits of π or e or some other well-known number

18/09/2007 3

S-38.3148 Simulation of data networks / Generation of random variables

Drawing a random number from a given distribution

• Based on the generation of so called (pseudo) random numbers

– aims at generating independent random numbers from the uniform distribution U(0,1)

• Given that random numbers from U(0,1) are available, random numbers with

any distribution can be generated by using an appropriate “transformation”

method (more on these later…)

• Programming languages, libraries and tools supporting simulation usually have

routines available for the generation of random numbers from the most common

distributions

18/09/2007 4

S-38.3148 Simulation of data networks / Generation of random variables

Generation of random numbers

• A random number generator refers to an algorithm which produces a sequence

of (apparently) random integers Z
i
in some range 0,1,…,m-1

– the sequence is always periodic (one aims at as long a period as possible)

– strictly speaking, the numbers generated by an algorithm are not random but on the

contrary deterministic; the sequence just looks random, i.e. is pseudorandom

– in practice, such numbers will do provided that the generation is done “carefully”

• The “randomness” of the generated numbers have to be checked by appropriate

statistical tests

– the uniformity of the distribution in the range {0,1,…,m-1}

– the independence of the generated numbers (often just uncorrelatedness)

• Simplest algorithms are so called linear congruental generators. A subclass of

these are formed by the so called multiplicative congruential generators.

– In both methods, each generated random number is determined by the previous one

through a deterministic mapping, Zi+1
= f(Z

i
).

• Other methods:

– more general congruential generators, where Z
i+1

= f(Z
i
, Z

i-1
,…)

– Mersene-Twister: a recent generator with huge period, large linear-feedback register

18/09/2007 5

S-38.3148 Simulation of data networks / Generation of random variables

Linear congruential generator (LCG)

• Linear congruential random number generator produces random integers Z
i
in

the range {0,1,…,m-1} using the following formula (the period is at most m):

• The generator is fully defined given the parameters a, c and m

• In addition, one needs the seed Z
0

• The parameters must be chosen carefully; otherwise the sequence can be
anything but random

• Under some conditions the sequence has the maximum period m

– for instance, m of the form 2^b, c odd, a of the form 4*k +1 (k is any integer > 0)

– note that even with a full period the quality of the sequence may not be good

– in practise, the values of a, c and m are defined in the implementation and user can
only choose the initial seed Z

0

• Used in standard C/C++ library

– rand() has typically sequence length 2^32 (~ 4*109 numbers, which is not that much)

– drand48() has sequence length 2^48 (~ 2*1014)

Z aZ c mi i+
= +1 () mod

18/09/2007 6

S-38.3148 Simulation of data networks / Generation of random variables

Multiplicative congruential generator (MCG)

• Multiplicative congruential random number generator produces integers Z
i
in the

range {0,1,…,m-1} using the following formula:

• This is a special case of LCG with the choice c = 0

• The algorithm is fully defined given the parameters a and m

• In addition, one needs the seed Z
0

• Also now, the parameters have to be chosen carefully in order to get pseudo

random numbers

• By the choice m = 2^b (with any b) the period is at most 2^(b-2)

• In the best case the period can be m - 1

– for instance when m is prime and a is chosen appropriately

Z aZ mi i+
=1 () mod

18/09/2007 7

S-38.3148 Simulation of data networks / Generation of random variables

Generation of random numbers from the uniform distribution U(0,1)

• If a (pseudo) random number generator produces a (pseudo) random integer I in

the range {0,1,…,M-1}, then the normalised variable U = I/M approximately

obeys the uniform distribution U(0,1) in the range (0,1)

18/09/2007 8

S-38.3148 Simulation of data networks / Generation of random variables

The use of the seed numbers
(depending on the rand-algorithm used some of the instructions are relevant /

irrelevant)

• Don’t use the seed 0

• Avoid even values

• Don’t use one random number sequence for several purposes

– e.g. if the numbers (u
1
, u

2
, u

3
, …) have been used to generate interarrival times, the same

sequence should not be used to generate service times

• When using many sequences (streams), make sure the sequences don’t overlap

– if the seed of one sequence is included in another sequence, then from that point on the
sequences are identical

– if you have to generate 10000 interarrival times and 10000 service times, the sequence of
random numbers (u

1
, u

2
,...,u

10000
) used for the generation of interarrival times can be

computed starting from the seed u
0

– service times can be generated using the numbers (u
10001

,…,u
2000

), i.e. the seed is u
10000

– if the sequences are not stored but the numbers are generated as they are needed you
have to figure out the seed u

10000
in advance by computing all the numbers (u

1
, u

2
,...,u

10000
);

these have to be recomputed during the simulation for the generation of the first sequence

• In practise, within a single simulation run by using a single stream of random
numbers one does not need to worry about overlaps

– with repeated runs, one must still be careful!

18/09/2007 9

S-38.3148 Simulation of data networks / Generation of random variables

Theory

• Introduction to simulation

• Flow of simulation -- generating process realizations

• Random number generation from given distribution

– Introduction and generation of pseudo random numbers

– Different methods for generating random numbers with a given distribution

– Simulating the Poisson process

• Collection and analysis of simulation data

• Variance reduction techniques

18/09/2007 10

S-38.3148 Simulation of data networks / Generation of random variables

Different sample generation methods overview

• Based on the generation of so called (pseudo) random numbers

– produces independent random numbers from the uniform distribution U(0,1)

• Random numbers from any distribution can be generated, provided that random

numbers from U(0,1) are available, by using some of the following methods:

– discretisation (=> Bernoulli(p), Bin(n,p), Poisson(a), Geom(p))

– rescaling (=> U(a,b))

– inverse transformation (inversion of the cdf function) (=> Exp(λ))

– other transformations (=> N(0,1) => N(µ,σ2))

– rejection method (works for any distribution)

– characterisation of the distribution (reduction to other distributions) (=> Erlang(n,λ),

Bin(n,p))

– composition method

18/09/2007 11

S-38.3148 Simulation of data networks / Generation of random variables

Generation of a discrete random variable

• Let U ~ U(0,1)

• Let X be a discrete r.v. with the range S = {0,1,2,…,n} or S = {0,1,2,...}

• Denote F(i) = P{X ≤ i}

• Then the random variable Y, where

obeys the same distribution as X (Y ~ X).

• This is called the discretization method. In fact it is the inverse transformation

method for a discrete distribution

• Example: Bernoulli(p) distribution:

Y i S F i U= ∈ ≥min{ | () }

{ }

−>

−≤
==

−>

.1,1

,1,0
1

1
pU

pU
Y pU

18/09/2007 12

S-38.3148 Simulation of data networks / Generation of random variables

Generation of a discrete random variable (continued)

• The described method, where the value of the random variable U ~ U(0,1) is

compared consecutively with the values of the cdf is general

• Making many comparisons, however, can be computationally slow (the

generations are done in the inner loops of the simulator and must be fast)

• In some simple cases the method based on comparisons can be replaced by a

method where the value of the random number to be generated can directly be

computed from the value of U using a simple formula

• Some examples are given in the following table

18/09/2007 13

S-38.3148 Simulation of data networks / Generation of random variables

18/09/2007 14

S-38.3148 Simulation of data networks / Generation of random variables

Generation of a discrete random variable (continued)

• Often it is not possible to generate a discrete r.v. directly from a given r.v.

U~U(0,1)

• Then one needs to compute the CDF F(x) and store it in an appropriate data

structure

• Simple search mechanisms:

– store values of F(x) in a vector and perform a linear search from the beginning

– improved search: any more advanced search, e.g., a binary search

– improved binary search: store the value of the index where F(x) equals roughly 0.5,

whence one can find with one comparison on which ”side” the result lies, and then

perform a binary search (or linear search)

• Optimal search (minimum number of comparison operations)

– use a Huffman tree to represent F(x)

18/09/2007 15

S-38.3148 Simulation of data networks / Generation of random variables

Using a Huffman tree to generate discrete rv:s

• Store the distribution in a Huffman tree, so that the most probable candidates

have the shortest path.

• The Huffman tree is created with the following algorithm:

– Create an ordered list of nodes. The elements in the list represent values of the rv and

are ordered by probability. These nodes will be the leaves in the tree.

– Take the first two items from the list (two smallest probabilities) and create a parent

node for them so that the smaller child is on the left. The probability of the new node

will be the sum of the children. The new node is added to the list in the right position.

– Repeat the previous step until the list has only one element, which is the root of the

tree.

• Now the sample generation goes as follows:

– Generate a random number U ~ U(0,1) and compare it to the probability of the left

child.

– If the value is smaller, move to the left child. If it is greater, subtract the probability of

the left child from the random number U and move to the right child. Compare the

random number to the probability of the new left child.

– Repeat the previous step until the current node is a leaf.

18/09/2007 16

S-38.3148 Simulation of data networks / Generation of random variables

Example of using a Huffman tree

value f(x) F(x)

1 0.10 0.10

2 0.30 0.40

3 0.20 0.60

4 0.15 0.75

5 0.25 1.00

Iteration 1

List: (0.1, 1), (0.15, 4), (0.20, 3), (0.25, 5), (0.30, 2)

Tree:

0.25:*

/ \

0.10:1 0.15:4

Iteration 2

List: (0.20, 3), (0.25,*), (0.25, 5), (0.30, 2)

Tree:

0.45:*

/ \

0.20:3 0.25:*

/ \

0.10:1 0.15:4

Iteration 3

List: (0.25, 5), (0.30, 2), (0.45,*)

Tree:

0.55:*

/ \

0.25:5 0.30:2

Iteration 4

List: (0.45,*), (0.55,*)

Tree:

_____1.0:*______

/ \

0.45:* 0.55:*

/ \ / \

0.20:3 0.25:* 0.25:5 0.30:2

/ \

0.10:1 0.15:4

18/09/2007 17

S-38.3148 Simulation of data networks / Generation of random variables

Generation of a random variable from the uniform distribution

• Let U ~ U(0,1)

• Then X = a + (b - a)U ~ U(a,b)

• An arbitrary uniform distribution is thus obtained simply by scaling

18/09/2007 18

S-38.3148 Simulation of data networks / Generation of random variables

Inverse transformation method

• Let U ~ U(0,1)

• Let X be a continuous r.v. in the range S = [0,∞)

• Assume that the cdf of X, F(x) = P{X ≤ x}, is monotonously growing and has the

inverse function F-1(y)

• Then the random variable Y, where

obeys the same distribution as X (Y ~ X).

• This is called the inverse transformation method (inversion of the cdf function)

• Proof: Since P{U ≤ z} = z for all z in the range [0,1], then the following holds

Thus Y ~ X.

Y F U=
−1()

P Y x P F U x P U F x F x{ } { () } { ()} ()≤ = ≤ = ≤ =
−1

18/09/2007 19

S-38.3148 Simulation of data networks / Generation of random variables

Generation of a random variable from the exponential distribution

• Let U ~ U(0,1)

• Let X ~ Exp(λ)

• The cdf of X, F(x) = P{X ≤ x} = 1 - exp(-λx), is monotonously increasing; thus it

has an inverse function F-1(y) = -(1/λ) ln(1 - y)

• Since U ~ U(0,1), then also 1 - U ~ U(0,1)

• Thus the inverse transformation method gives us

• Algorithm

UUFX log)/1()1(1 λ−=−=
−

18/09/2007 20

S-38.3148 Simulation of data networks / Generation of random variables

Generation of a random variable from the Weibull distribution

• The Weibull distribution W(λ,β) is a generalisation of the exponential distribution

• The cdf of X ~ W(λ,β) is F(x) = P{X ≤ x} = 1 - exp(-(λx)β)

• This has the inverse function F-1(y) = (1/λ)[-ln(1 - y)]1/β

• Algorithm

β
λ

/11)log)(/1()1(UUFX −=−=
−

18/09/2007 21

S-38.3148 Simulation of data networks / Generation of random variables

• Let U and V be independent random variables from U(0,1)

• According to so called Box-Müller method the random variables X and Y, where

are independent random variables obeying the distribution N(0,1)

• Proof:

– Consider X and Y in polar coordinates R2 = X2 + Y2 and tan Θ = Y / X

– The joint pdf of X and Y is

– Now we do a change of variables d = x2 + y2 and Θ = atan(y / x). Thus,

– Thus, R2 and Θ are independent with R2 ~ Exp(1/2) and Θ ~ U(0, 2π)

– Given (U,V) we generate R2 = -2 log U and Θ = 2πV ⇒ X = R cos Θ and Y = R sin Θ

• An arbitrary normal distribution is obtained by scaling: µ + σX ~ N(µ,σ2)

Polar coordinate transformation: generation of random variable from

the normal distribution

()

()VUY

VUX

π

π

2sinln2

2cosln2

−=

−=

() () () 2/
22

2/1,
yxeyxf +−

= π

() () () () 2/

2

1

2

1
,),(),,(,

2

1

),(

),(
, dedJdydxfdf

d

yx
dJ −

⋅=Θ⋅ΘΘ=Θ⇒=
Θ∂

∂
=Θ

π

18/09/2007 22

S-38.3148 Simulation of data networks / Generation of random variables

More sample generation methods

• Continue with the material from “Generation of random variables”, part 2

18/09/2007 23

S-38.3148 Simulation of data networks / Generation of random variables

Theory

• Introduction to simulation

• Flow of simulation -- generating process realizations

• Random number generation from given distribution

– Introduction and generation of pseudo random numbers

– Different methods for generating random numbers with a given distribution

– Simulating the Poisson process

• Collection and analysis of simulation data

• Variance reduction techniques

18/09/2007 24

S-38.3148 Simulation of data networks / Generation of random variables

Generation of arrivals from a Poisson process

• The most important model for the arrival processes used in the analysis of

telecommunication systems is the Poisson process

• Poisson process with arrival intensity λ can be characterized as process with

interarrival times which are independent and obey the exponential distribution

Exp(λ)

– Denote the arrival time of customer n by t
n

– Arrival instants can be generated using the formula t
n+1

= t
n
+ X

n
, where X

n
~ Exp(λ)

• Another way to generate a realization of a Poisson process in the interval (0,T):

– draw the total number of arrivals N from Poisson distribution N ~ Poisson(λT)

– draw the location of each arrival instant t
n
in (0,T) from the uniform distribution t

n
~

U(0,T)

– the instants t
1
, t

2
,…, t

n
(in order) constitute a realisation of the Poisson process

Utt
nn

log
1

1

λ
−=

+

18/09/2007 25

S-38.3148 Simulation of data networks / Generation of random variables

More general arrival processes

• GI (generally distributed, independent) arrivals

– only affects the interarrival time distribution!

• More general arrivals (non-independent)

– must explicitly take into account the dependency structure

– for example an MMPP (Markov Modulated Poisson Processes) where Poisson arrivals

occur with different rates depending on the state of the modulating Markov chain

18/09/2007 26

S-38.3148 Simulation of data networks / Generation of random variables

Generation of arrivals from a nonstationary Poisson process (1)

• Sometimes the assumption of a constant arrival rate for the Poisson arrivals is
not valid (cf. time controlled public votings or competitions)

– a Poisson process for which the arrival rate is a function of time, λ(t), is called a
nonstationary Poisson process

• Two methods: thinning or inverse transform

• Thinning method

– Poisson process with intensity λ from which arrivals are accepted with a probability p
(rejected with prob. 1-p) is still a Poisson process, but with intensity pλ

– In simulation λ(t) is known and it is possible to determine an upper bound λ∗ ≥ λ(t), ∀t

– Idea: One generates arrivals with intensity λ∗ and a particular arrival at time t’ is
accepted with probability λ(t’)/λ∗

• Algorithm: let tn be the arrival instant of the nth customer

1. Set τ = t
n

2. Generate U
1
, U

2
~ U(0,1)

3. Set τ = τ – (1/ λ∗) ln U
1

4. If U
2
≤ λ(τ)/ λ∗ return t

n+1
= τ, else goto step 2

• Problem: Generation of ”extra” arrivals

– inefficient if λ∗ is large compared with the majority of the values of λ(t) (for example,
high and narrow spikes in the shape of the rate function)

18/09/2007 27

S-38.3148 Simulation of data networks / Generation of random variables

Generation of arrivals from a nonstationary Poisson process (2)

• Inverse transform: comparable with the inverse transform method of the cdf

• Define the function Λ(t)

– Λ(t) denotes the average number of arrivals in the interval [0, t]

• Idea: Generate first arrival instants τn with Poisson intensity 1 and perform the

transformation tn = Λ-1(τn), where Λ-1(y) is the inverse function of Λ(y). Then,

arrivals tn constitute a Poisson process with intensity λ(t)

• Algorithm: let τn denote the arrival instant of the nth customer generated with

intensity 1, tn denotes the actual arrival time with intensity λ(t)

1. Generate U
1
~ U(0,1)

2. Set τ
n+1
= τ

n
– ln U

1

3. Return t
n+1

= Λ-1(τ
n+1
)

• Benefit: all arrival events can be utilized

– Problem: solving the inverse function may be difficult/impossible

() () dyyt

t

∫=Λ

0

λ

18/09/2007 28

S-38.3148 Simulation of data networks / Generation of random variables

0 5 10 15 20 25 30

t

0

5

10

15

20

L
HtL

Generation of arrivals from a nonstationary Poisson process (3)

• Example of the inverse transform method

0 5 10 15 20 25 30

t

0

0.2

0.4

0.6

0.8

1

l
HtL

() () [] () ()()10/cos11010,0,10/sin ttttt −=Λ⇔∈= πλ

g
e
n
e
ra
te
d
 P
o
i(
1
)
a
rr
iv
a
ls

realized Poi(λ(t)) arrivals

