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Generation from simple discrete distributions

• Note! This is just a more clear and readable version of the same slide that was already in the

Generation of Random Numbers, Part 1 (slide 12).

• In the following U, U1, . . . , Un denote independent random variables ∼U(0,1)

• int(X) = bXc = integer part of X

Distribution Expression for generation

Symmetric bivalued {0,1} distribution

P{X = 0} = P{X = 1} = 0.5
int(2U) or int(U + 0.5)

Symmetric bivalued {0,1} distribution

P{X = 0} = 1− p, P{X = 1} = p
int(U + p)

Bivalued {-1,1} distribution

P{X = 0} = 1− p, P{X = 1} = p
2 int(U + p)− 1

Trivalued {0,1,2} distribution

probs:t = {1− p1 − p2, p1, p2} int(U + p2) + int(U + p1 + p2)

Uniform discrete distribution

{0, 1, 2, . . . , n− 1} int(nU)

Uniform discrete distribution

{1, 2, 3, . . . , n} int(nU) + 1

Binomial distribution

Bin(n, p)

n∑

i=1
int(Ui + p)
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Generation from geometric distribution

• The point probabilities of a discrete random variable X obeying the geometric distribution

Geom(p) are

P{X = i} = pi = p(1− p)i i = 0, 1, 2, . . .

• The generation of samples of X can be done with the following simple procedure

• Algorithm

X =


log U

log(1− p)



where U ∼ U(0, 1)

• In fact, this represents generation of samples from the distribution Exp(− log(1 − p)) and

discretization to the closest integer smaller then or equal to that value
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Rejection method (rejection-acceptance method)

• The task is to generate samples of the random variable X from a distribution with pdf f (x)

• Let g(x) be another density function and c a constant such that

– c g(x) majorizes f (x), i.e. c g(x) ≥ f (x) in the whole range of X

– there is an (easy) way to generate samples for a random variable with pdf g(x)

• The generation of X can be done with the following method:

• Algorithm

– Generate X with pdf g(x)

– Generate Y from the uniform distribution U(0, c g(X))

– If Y ≤ f (X) then accept X

∗ otherwise generate as above new values X and Y until a pair is found which satisfies

the acceptance criterion; return X

• Proof: P{X ∈ (x, x + dx) and Y ≤ f (X)} = g(x)dx · f (x)/cg(x) = f (x)dx/c

P{Y ≤ f (X)} =
∫

f (x)dx/c = 1/c

P{X ∈ (x, x + dx) |Y ≤ f (X)} = (f (x)dx/c)/(1/c) = f (x)dx
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Rejection method (example)

• When the range is a finite interval (a, b) one can choose g(x) to be the pdf of a random

variable uniformly distributed in this interval: g(x) = 1/(b− a), when x ∈ (a, b)
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• Assume X ∈ (0, 1) obeys the beta distribution β(2, 4)

with pdf

f (x) = 20x(1− x)3, 0 ≤ x < 1

• The function is limited in a rectangle with height 2.11

– choose c = 2.11 and g(x) = 1, when 0 ≤ x < 1

• The algorithm is now the following

– Generate X from the uniform distribution U(0, 1)

– Generate Y from the uniform distribution U(0, 2.11)

– If Y ≤ 20X(1−X)3, accept X and stop, otherwise continue from the beginning until an

acceptable pair has been found

• Here the generated values (X,Y ) represent a point uniformly distributed in the rectangle

– it is clear that the proportion of accepted values of X = x is proportional to f (x)

– the pdf of the accepted values X is then f (x)
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Composition method

• Assume that the pdf f (x) of X, from which samples are to be drawn, can be written (decom-

posed) in the form

f (x) =
r∑

i=1
pifi(x)

where

– the pi form a discrete probability distribution,
∑

i
pi = 1

– the fi(x) are density functions,
∫

fi(x) dx = 1

• This kind of distribution is called a composition distribution

• The sample generation can be done as follows

– draw index I from the distribution {p1, p2, . . . , pr}
– draw value of X using the pdf fI(x)
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Composition method (continued)

• For instance, the method can be used by dividing the range of X (a, b) into smaller intervals

(a1, b1), (a2, b2), . . . , (an, bn)

– pi is then the probability that X lies in the interval i

pi =
∫ bi

ai
f (x) dx

– fi(x) is the conditional pdf in the interval i

fi(x) =





f (x)/pi x ∈ (ai, bi)

0 otherwise
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Composition method (example 1)

• The task is to generate samples X from the distribution Exp(1)

• Divide (0,∞) into intervals (i, i + 1), i = 0, 1, 2, . . .

• The probabilities of the intervals

pi = P{i ≤ X < i + 1} = e−i − e−(i+1) = e−i(1− e−1)

constitute a geometric distribution (starts from 0)

• The conditional pdf’s are

fi(x) = e−(x−i)/(1− e−1) i ≤ x < i + 1

that is, in the interval i, r.v. (X − i) has the pdf e−x/(1− e−1), 0 ≤ x < 1

• Algorithm

– draw I from geometric distribution pi = e−i(1− e−1), i = 0, 1, 2, . . .

– draw Y with the pdf e−x/(1− e−1), 0 ≤ x < 1 (for instance, using the rejection method)

– X = I + Y

• Advantage: one does not need to compute the logarithm function unlike when using the

inverse transform method
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Composition method (example 2)

• Instead of the pdf one can as well work with the cdf’s in the composition method

• Let the cdf of X be

F (x) = 1− αe−β1x − (1− α)e−β2x

= α(1− e−β1x) + (1− α)(1− e−β2x)

• Algorithm

– draw the index I : P{I = 1} = α, P{I = 2} = 1− α

– draw the value of X from the distribution FI(x)

F1(x) = 1− e−β1x F2(x) = 1− e−β2x

– or if I = 1 then X = − 1
β1

log U ; if I = 2 then X = − 1
β2

log U

• using the inverse transformation method would be rather difficult

– the inverse cdf function cannot be calculated analytically



S-38.3148 Simulation of data networks / Generation of random variables 9(18)

Characterization of the distribution

• Many distributions are defined in the form: X is distributed as the sum of n independent

random variables, each of them obeying a given distribution “Dist”

• Then X can be generated literally by drawing independently values for n random variables

Zi from distribution “Dist”; then X = Z1 + Z2 + · · · + Zn obeys the desired distribution

• Examples of this kind of distributions are the binomial distribution, gamma distribution

(Erlang’s distribution) and χ2-distribution
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Characterization method (example: binomial distr.)

• The binomial distribution Bin(n, p) is the distribution obeyed by the sum of n independent

Bernoulli(p)-variables

X =
n∑

i=1
Bi, Bi ∼ Bernoulli(p) ⇒ X ∼ Bin(n, p)

– Bernoulli(p)-variable takes value 1 with probability p and value 0 with probability 1− p

– Bi = int(p + Ui) = bp + Uic, Ui ∼ U(0, 1) (integer part)

• Algorithm

X =
n∑

i=1
bp + Uic, Ui ∼ U(0, 1)
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Characterization method (example: gamma distribu-
tion)

• When n is an integer Γ(n, λ)-distribution is the distribution of the sum of n independent

random variables obeying the Exp(λ) distribution

X =
n∑

i=1
Yi, Yi ∼ Exp(λ) ⇒ X ∼ Γ(n, λ)

• By taking into account how exponentially distributed random variables can be generated we

get the following algorithm

• Algorithm

X = −1

λ
log

n∏

i=1
Ui, Ui ∼ U(0, 1)

• The sum of logarithms has been written as a logarithm of the product

– this is advantageous as the logarithmic function has to be computed only once
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Characterization method (example χ2-distribution)

• χ2(ν)-distribution with ν degrees of freedom (integer) represents the sum of ν independent

N(0, 1)-distributed random variables

X =
ν∑

i=1
Yi, Yi ∼ N(0, 1) ⇒ X ∼ χ2(ν)
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Characterization method (example: Poisson distr.)

• Another type of example of the characterization method is provided by the Poisson distribu-

tion

• The number of arrivals N from a Poisson process (intensity a) in the interval (0, 1) is Poisson

distributed with parameter a, N ∼ Poisson(a)

• Draw interarrival times Ti, i = 0, 1, 2, . . . from the Exp(a)-distribution, Ti = −(1/a) log Ui

• N is the number of intervals within interval (0,1) or formally N = min



n :

n∑

i=0
Ti > 1





• Algorithm

N = min



n :

n∏

i=0
Ui < e−a





– multiply numbers Ui ∼ U(0, 1), i = 0, 1, 2, . . .

– N is the first value of i such that the product is less than e−a
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Poisson distribution: numerical example

• Let the mean be a = 0.2

• The comparison parameter is u = e−0.2 = 0.8187

i Ui U0 · · ·Ui accept/continue Result

0 0.4357 0.4357 < u, accept N = 0

0 0.4146 0.4146 < u, accept N = 0

0 0.8353 0.8353 ≥ u, continue

1 0.9952 0.8313 ≥ u, continue

2 0.8004 0.6654 < u, accept N = 2

• When a is large the method is slow; the values of N are then typically large and one has to

generate a large number of values Ui

• Then it is better to use the discretization method (inversion of the discrete cdf)

• For very large values of a, one may also apply approximation by normal distribution (denote

Z ∼ N(0, 1))

Poisson(a) ≈ N(a, a) ⇒ N ≈ da +
√

aZ − 0.5e



S-38.3148 Simulation of data networks / Generation of random variables 15(18)

Characterization method (other examples)

• The ath smallest of the numbers U1, U2, . . . , Ua+b+1, where the Ui are independent uniformly

distributed random variables, Ui ∼ U(0, 1), obeys the β(a, b)-distribution

• The ratio of two N(0, 1)-distributed random variables obeys the Cauchy(0, 1)-distribution

• χ2(ν)-distribution with an even number of degrees of freedom ν is the same as the Γ(ν/2, 1/2)-

distribution

• With two independent gamma-distributed random variables one can construct a beta-distributed

random variable

X1 ∼ Γ(b, a) X2 ∼ Γ(c, a) ⇒ X1

X1 + X2
∼ β(b, c)

• If X ∼ N(0, 1) is a normally distributed random variable, then eµ+σX is lognormal(µ, σ)

random variable
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Generation from a multi-dimensional distribution

• Task: generate samples of X1, . . . , Xn, which have the joint density function f (x1, . . . , xn)

• Write this density function in the form f (x1, . . . , xn) = f1(x1)f2(x2 | x1) . . . fn(xn | x1, . . . , xn−1)

where f1(x1) is the marginal distribution of X1 and fk(xk | x1, . . . xk−1) is the conditional

density function of Xk with the condition X1 = x1, . . . , Xk−1 = xk−1

• The idea is to generate the variables one at a time: first one draws value for X1 from its

marginal distribution, them one draws value for X2 from the conditional distribution using

the value of X1 (already drawn) as the condition, etc.

• Denote by Fk the conditional cdf corresponding to the conditional pdf fk and use the inverse

transform method

• Algorithm

– generate the random variables U1, . . . , Un from the uniform distribution U(0, 1)

– solve the equations (invert the cdf’s)

F1(X1) = U1

F2(X2 | X1) = U2
...

Fn(Xn | X1, . . . , Xn−1) = Un
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Multi-dimensional distribution: example

• The problem is to generate points (X, Y ) in the unit square, with the left lower corner at the

origin, using the density function which grows along the diagonal (the integral of the density

over the square is 1)

f (x, y) = x + y

• The marginal pdf and cdf of X are

f (x) =
∫ 1

0
f (x, y) dy = x +

1

2
, F (x) =

∫ x

0
f (x′) dx′ =

1

2
(x2 + x)

• The conditional pdf and cdf functions of Y are

f (y | x) =
f (x, y)

f (x)
=

x + y

x + 1
2

, F (y | x) =
∫ y

0
f (y′ | x) dy′ =

xy + 1
2y

2

x + 1
2

• Inversion of the cdf functions gives the formulas

X = 1
2(
√

8U1 + 1− 1)

Y =
√
X2 + U2(1 + 2X)−X
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Generation from a multinormal distribution

• A random vector X = (X1, . . . , Xn), which obeys multi-dimensional normal distribution

(multinormal distribution) has the pdf

f (x) =
1

(2π)n/2|Σ|1/2e
−1

2(x−m)TΣ−1(x−m)

where m is the mean (vector) and Σ is the covariance matrix

• Since Σ is a positive definite and symmetric matrix one can always find a unique lower

triangular matrix (alternatively a symmetric matrix) C such that Σ = CCT

• Samples of X can now be generated as follows

• Algorithm

X = CZ + m

where the components of the vector Z = (Z1, . . . , Zn) are independent normally distributed

random variables, Zi ∼ N(0, 1)

– the formula can be verified by making a change of variables in the density function,

whereby the pdf of Z is obtained as (2π)−n/2e−
1
2Z

TZ


