S-38.3148 Simulation of data networks / CNCL

CNCL: Contents

- CNCL C++ library for supporting event driven simulations
- Learning CNCL by examples
- CNCL project work instructions

5.11.2007

S-38.3148 Simulation of data networks / CNCL

Setting the context...

- Context:
 - Ad hoc network with mobile nodes using a simple mobility model known as Random Waypoint
 - We are interested in connectivity properties of such a network assuming a simple node connectivity model (Boolean model)
 - Connectivity is related to network reliability (not to traffic performance)
- The assignment is about ...
 - Creating a discrete event simulator for the above network
 - Requires handling of mobile movement but ...
 - NO traffic needs to be simulated
 - Measuring connectivity requires sampling of the system state at fixed intervals

1

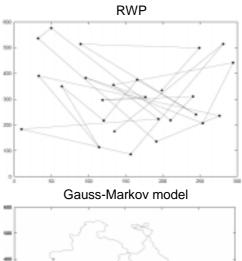
Ad hoc networks

- IETF working group: MANET (Mobile Ad Hoc Networks)
- Characteristics
 - Wireless meshed network where communication occurs over multihop paths
 - No centralized control (no base station)
 - Nodes communicate directly with other nodes that are within radio coverage
 - Nodes act as relays for the traffic from other nodes
 - Nodes can join and leave the network
- Applications
 - Conferences and meetings
 - Emergencies, disasters
 - Tactical military

5.11.2007

S-38.3148 Simulation of data networks / CNCL

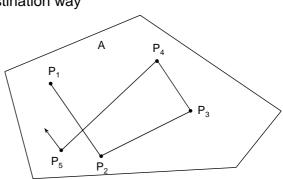
Mobility modeling (1)


- Much of ad hoc networking research based on simulations
- Mobility model is an important component in the simulations
- Two broad classes of mobility models
 - Simple, so called synthetic models
 - Realistic models
- Mobility affects many aspects in performance of networking mechanisms
 - Traffic load, routing, reliability...

3

Mobility modeling (2)

- Realistic models
 - Often utilizes measurement based information
 - More complex to utilize
- Synthetic models
 - Do not aim at imitating human movement
 - Mobility is random and the movement rules are as simple as possible
 - Facilitates implementation but movement is still sufficient for evaluating the performance of a given protocol
 - Also, models that include topography info, group mobility...
- Properties of simple models can be analyzed analytically
 - Impact of mobility on performance may also be analyzed



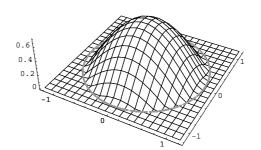
S-38.3148 Simulation of data networks / CNCL

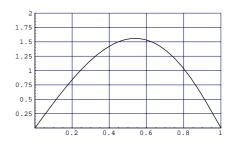
Random waypoint mobility model

- Node moves within an area A along a zig-zag path
- Each turning point called way point
- Path from waypoint to another called a leg
- At each way point node selects a new destination way point from a uniform distribution over A
- Node moves to the new location at constant speed
- Speed can also be chosen from a given distribution independently of everything else (v_{min} > 0)
- In case of a network of nodes, each node moves independently
- In this exercise we consider
 - n nodes
 - movement area is the unit disk

Analysis of RWP

- General results: node location distribution, f(r), and mean length of a leg, $\overline{\ell}$
- Example: unit disk
 - pdf of node location distribution


$$f(r) = \frac{2(1-r^2)}{\bar{\ell}\pi^2} \int_0^{\pi} \sqrt{1-r^2 \cos^2 \phi} \, d\phi$$


mean length of a leg

$$\int_{r=0}^{1} 2\pi r f(r) = 1 \implies \bar{\ell} = \frac{128}{45\pi} = 0.905$$

- pdf for distance from center, R

$$g(r) = 2\pi r f(r) \implies \mathrm{E}[R] \approx 0.516$$

5.11.2007

S-38.3148 Simulation of data networks / CNCL

Connectivity (1)

- We consider a network of n nodes moving according to RWP
- Boolean network model
 - Two nodes are connected if distance between them is greater than the transmission range of a node
 - Additionally we assume that all nodes have the same transmission range
 - Only takes into account signal attenuation as a function of distance (ignores interference effects)
- Definition: For a given graph,
 - 1-connectivity: there exists a path from all nodes to all other nodes
 - sufficient to check if from one node all other nodes can be reached
 - k-connectivity: there exists k node disjoint paths from all nodes to all other nodes
 - implies that any k-1 nodes can fail and the network is still connected
- Here we are only interested in properties related to 1-connectivity, and we use just the word connectivity to refer to 1-connectivity

7

S-38.3148 Simulation of data networks / CNCL

Connectivity (2)

- We are interested in
 - probability of connectivity, and
 - mean length of the connectivity periods
- Probability of connectivity:
 - Probability that the network is connected at an arbitrary point of time
 - By definition, it gives also the fraction of time the network is connected
- Mean length of 1-connectivity periods
 - observing the system state over time, the network is connected (and disconnected) for random periods of time
 - In this exercise, we are only interested in the mean length of the connectivity periods

5.11.2007

9

S-38.3148 Simulation of data networks / CNCL

CNCL assignment

- You are given an example skeleton code for a simulation model of RWP
 - Makefile, cncl_sim.c
- Your task is to
 - Part 1: implement the RWP mobility model and verify it works (by Thu, 15.11.)
 - Part 2: study the connectivity properties and write report (by Mon, 26.11.)