CNCL: Contents

- CNCL C++ library for supporting event driven simulations
- Learning CNCL by examples

- Example 1: GI/GI/1 system, combined queue and server

- Example 2: steady state simulation using independent runs
- Example 3: GI/GI/1 system, separate queue and server
- CNCL project work instructions

31.10.2007

1

S-38.3148 Simulation of data networks / CNCL

Extra material (1)

- All code examples referred to in this lecture available from
 - http://www.netlab.tkk.fi/opetus/s383148/
 - Available files are: Makefile, mm1v1.c, mm1v2.c, mm1v3.c
- CNCL compiles on machines with g++ Version 2.95.xx or less
 - machines in computer class B215
 - Current list of machines (from http://www.ee.hut.fi/unix/hardware.shtml)
 - erlang.ee.hut.fi, forney.ee.hut.fi, gallager.ee.hut.fi, golay.ee.hut.fi, hamming.ee.hut.fi, reed.ee.hut.fi, shannon.ee.hut.fi, solomon.ee.hut.fi, viterbi.ee.hut.fi, wiener.ee.hut.fi

Extra material (2)

Usage

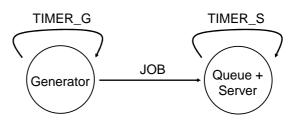
- Copy files to a directory
- Create a configuration file "use.cncl" with the following line:
 - Tcsh users:

```
setenv LD_LIBRARY_PATH /usr/lib:/usr/local/lib:$LD_LIBRARY_PATH
setenv PATH /opt/csw/gcc2/bin:$PATH
```

Bash users:

```
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib:/usr/local/lib
export LD_LIBRARY_PATH
PATH=/opt/csw/gcc2/bin:$PATH
export PATH
```

- In the directory, set up your paths by writing "source use.cncl"
- In the directory, create a ".depend"-file by writing "touch .depend"
- Run "make"

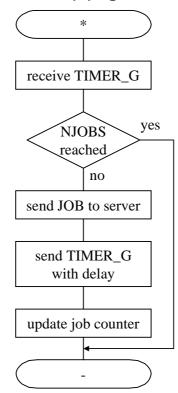

31.10.2007

3

S-38.3148 Simulation of data networks / CNCL

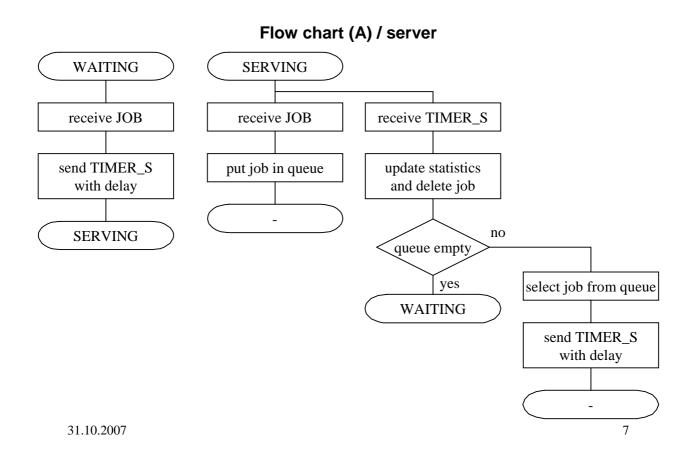
CNCL: modeling the GI/GI/1 system

- Modeling packet arrivals easy
 - packet arrival times are independent of each other
 - generator only needs to send a packet every *interval* time units, where *interval* is a random variable with a given (general) distribution
- Modeling queue/server
 - in the simple GI/GI/1 system the queuing discipline is just FIFO, so server does not have any real functionality ⇒ queue and server can be in the same process
- Event handlers:
 - generator
 - queue + server
- Three event types
 - TIMER_G: a new job is generated
 - JOB: generator sends a job to server
 - TIMER_S: server is free to take a new job from queue



Example 1

- Basic GI/GI/1 functionality
 - with Poisson arrivals and exponential service times
- Statistics collection
 - queuing delay
 - sojourn times
- Contains initial (and final) transient
 - simulates fixed number of packets starting from an empty system until last packet has been served
- Example code:
 - mm1v1.c


31.10.2007

S-38.3148 Simulation of data networks / CNCL

Flow chart (A) / generator

5

S-38.3148 Simulation of data networks / CNCL

CNCL: Contents

- CNCL C++ library for supporting event driven simulations
- Learning CNCL by examples
 - Example 1: GI/GI/1 system, combined queue and server

Example 2: steady state simulation using independent runs

- Example 3: GI/GI/1 system, separate queue and server
- CNCL project work instructions

Example 2

- Adding functionality to the basic GI/GI/1 example
- Aim
 - steady state simulation of mean sojourn times as a function of offered load
 - does not affect the overall model of the system (i.e., the process model)
- Statistics collection
 - initial (and final) transient removal
 - statistics output to a file ("out.dat")
 - comparing simulations and analytical results in Matlab
 - recall that mean delay D in an M/M/1 queue is

$$D = \frac{1}{\mu - \lambda}$$

• Example code:

mm1v2.c

31.10.2007

9

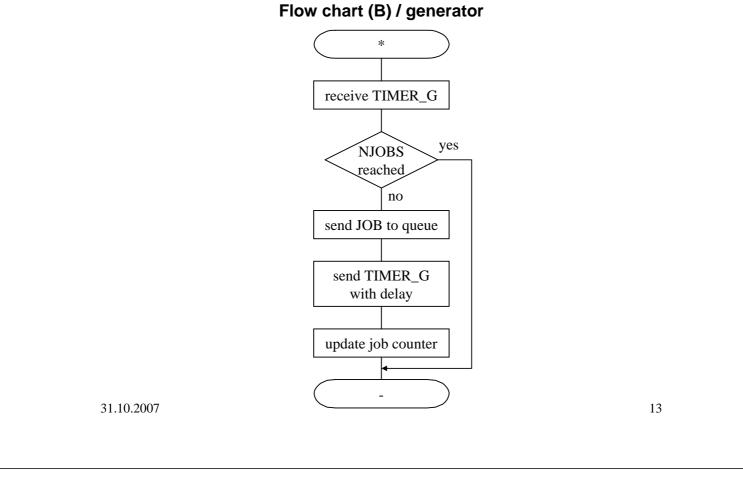
S-38.3148 Simulation of data networks / CNCL

Example 2

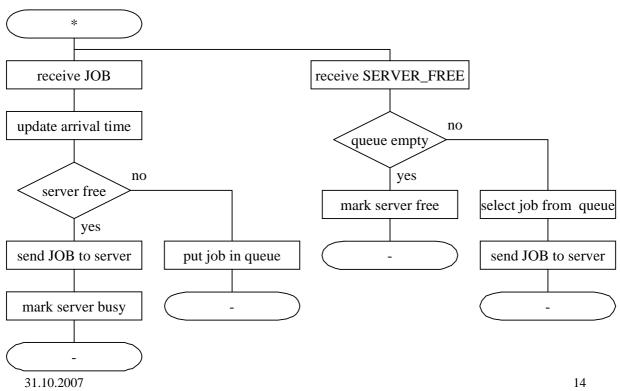
- Discussion:
 - how do you change the code (state machine) such that the queue size is finite (GI/GI/1/K-system)?
 - how is packet loss probability measured/estimated?
- Answers:
 - buffer size K packets
 - need to add a new state variable to class Server: N, number of packets in the system
 - upon arrival (event JOB) the state variable is checked (N = K), and if true packet is discarded
 - to estimate packet loss probability, only a count of lost packets is needed (and the number of arrived packets)
 - again, need to take care of starting measurements only after initial transient

CNCL: Contents

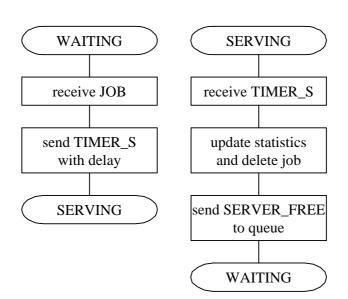
- CNCL C++ library for supporting event driven simulations
- Learning CNCL by examples
 - Example 1: GI/GI/1 system, combined queue and server
 - Example 2: steady state simulation using independent runs
 - Example 3: GI/GI/1 system, separate queue and server
- CNCL project work instructions


31.10.2007

11


S-38.3148 Simulation of data networks / CNCL

Example 3


- Basic GI/GI/1 example
- Separating the queue and the server from each other
 - e.g., if we have a queuing system with multiple queues and a single server with an advanced scheduling algorithm
- Example code:
 - mm1v3.c

S-38.3148 Simulation of data networks / CNCL

Flow chart (B) / queue

Flow chart (B) / server

31.10.2007

15

S-38.3148 Simulation of data networks / CNCL

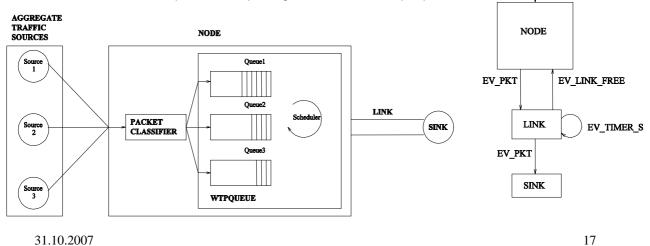
Example 3

- Discussion:
 - how do you change the code (state machine) to simulate a 2 class queue with advanced scheduling?
- Answers:
 - 2 classes \Rightarrow 2 instances of Generators, 2 instances of queues
 - Stopping rule at generator does not anymore make sense
 - Scheduler implemented in server, so some changes need to be made to current design
 - Changes in Queue-class
 - Server needs to know if Queue1 or Queue2 is empty (methods must be added to Queue class)
 - Queue class can not have local info about Server status (why?)
 - Upon receipt of SERVER_FREE, queue does not anymore check if queue is empty or not (functionality moved to server)
 - Changes in Server-class
 - Must have a server_status()-method
 - Upon receipt of JOB-event, the delay of the event TIMER_S may depend on the class of the job
 - Upon receipt of TIMER_S event,
 - if class 1 queue is non-empty, sends SERVER_FREE to Queue1
 - if class 1 is empty and 2 non-empty, sends SERVER_FREE to Queue2

31.10.2007

- If both queue are empty, server state changes to WAITING

Example 3 : DiffServ router


EV_TIMER_G

TRAFFIC

SOURCE

EV_PKT

- Example: DiffServ QoS architecture
 - Traffic grouped into N different classes
 - Objective: relative delay differentiation using WTP scheduler
 - Packets are classified on the edge
 - In the core network, packets are routed simply based on class
 - Each router implements a queuing block as below/output port

