
22.10.2007 1

S-38.3148 Simulation of data networks / fall-07

Part 2: CNCL

22.10.2007 2

S-38.3148 Simulation of data networks / CNCL

CNCL: Contents

• CNCL – C++ library for supporting event driven simulations

– Overview

– Main classes needed in simulations

• Learning CNCL by examples

• CNCL project work instructions

22.10.2007 3

S-38.3148 Simulation of data networks / CNCL

CNCL introduction

• Implemented by Communication Networks, Aachen University of Technology
– freeware
– Version 2.1 package can be downloaded from the course web page

http://www.netlab.tkk.fi/opetus/s383148/

– compiles with g++ version 2.95.xx or less on most Unix-type platforms
– easy installation (“make NewWorld”)
– compilation on more recent compilers requires changes in Makefile(s) and class files

• C++ class library
– collection of classes for supporting event driven simulation
– “light weight” simulation software
– provides functionality for example for event handling/scheduling, random number

generation, statistics collection, basic statistical analysis of results

• Usage
– user writes his own code (in C/C++)
– compiles (make) the code and links together own code and the class library

22.10.2007 4

S-38.3148 Simulation of data networks / CNCL

Modeling with CNCL (1)

• Basic philosophy
– simulation model consists of processes and events
– processes send events to each other

Process 4Process 1

Process 2

Process 3

ev_a

ev_b

ev_c

ev_a

ev_d

ev_c

ev_a

ev_a

22.10.2007 5

S-38.3148 Simulation of data networks / CNCL

Modeling with CNCL (2)

• Process
– implements a state machine (e.g., a server in a queue can be in state idle/serving)
– receives events and depending on event’s type executes an appropriate method

(function)
– while executing the method associated with an event, it typically changes the process’s

state and schedules new events
– in practise, a process is a C++ class that has been derived (through inheritance) from

the CNEventHandler – class

• Event
– causes the state of a process to change
– events drive the simulation’s execution and (usually) imply the advancement of

simulation time
– for example, packets arriving at the queue, packet finishes service at the server, …

• Event vs. direct method call:
– for reasons of modularity of the program design, a process can be implemented by

using several classes
– not all classes need to be able to handle events
– often the internal overhead of event scheduling can be avoided by using just a direct

method call

22.10.2007 6

S-38.3148 Simulation of data networks / CNCL

CNCL and C++ (1)

• CNCL programs implemented in C++

• CNCL library provides basic functionality for
– pseudo random number generation, generation from given distributions, statistical

analysis, basic queue elements, event management etc.
– user can directly use these classes

• CNCL event handling
– user must implement event handling logic himself
– each process in the model is an event handler
– event handler in practice

• an event handler is a C++ class, that has been derived from an abstract event
handler base class (CNEventHandler)

• event handling logic implemented in predefined functions of the derived class (the
function ”void event_handler()” is declared virtual in base class)

22.10.2007 7

S-38.3148 Simulation of data networks / CNCL

CNCL and C++ (2)

• Memory management must be handled by the user

• Memory space for an object can be created either statically from the stack or
dynamically from the heap

• Stack allocation (static)
{

MyObject x;

.

.

.
}

– an object that is declared directly is created on the stack and objects are destroyed in
reverse order of creation (done automatically on exit of the block they were created in)

– user has no control over the creation timing and destroying
– e.g. random number generators and event schedulers can be such static objects

created in the main program

22.10.2007 8

S-38.3148 Simulation of data networks / CNCL

CNCL and C++ (3)

• Heap allocation (dynamic)
{

MyObject* xPtr;

xPtr = new MyObject;

.

.

.

delete xPtr;

}

– objects created with the new operator are placed on the heap and will persist until
explicitly destroyed, or the program terminates

– every object created with new must be explicitly destroyed with a corresponding delete
– e.g. in simulation of a network (or just single queue) packets going through the system

should be dynamic objects

22.10.2007 9

S-38.3148 Simulation of data networks / CNCL

CNCL properties

• Pros
– as the user implements all functionality, the user also has full control of what

functionality is needed and what is not
– fast execution times (no unnecessary overhead)
– (relatively) easy to learn (simple)
– good support for random number generation and event driven simulation

• Cons
– no ready made functional blocks for network simulations (e.g., different protocols, etc.)
– implementation time may be substantial

22.10.2007 10

S-38.3148 Simulation of data networks / CNCL

CNCL: Contents

• CNCL – C++ library for supporting event driven simulations

– Overview

– Main classes needed in simulations

• Learning CNCL by examples

• CNCL project work instructions

22.10.2007 11

S-38.3148 Simulation of data networks / CNCL

Essential functionality needed in every simulation program

• To some extent, all simulations need the same basic building blocks

– pseudo random number generator

– random number generators from given distributions

– event scheduler (event exploders,…)

– different queues (FIFO, priority queues, …)

– event data structure

– jobs (packets)

22.10.2007 12

S-38.3148 Simulation of data networks / CNCL

Class hierarchy

CNObject

CNJobCNRNG
CNRandom

CNEventCNStatistics

CNEvent
Handler

. . .

CNCL

• Class CNCL provides functions for error handling
• CNObject is the root of the CNCL class hierarchy

22.10.2007 13

S-38.3148 Simulation of data networks / CNCL

Random number generators

• CNRNG is an abstract base class for all CNCL random number generators
– the pseudo-random number generators to be used have been derived from CNRNG

• CNRNG supports following pseudo random number types
– unsigned integer 0..231-1

– float 0..1
– double 0..1

• Actual RNGs differ in
– quality of pseudo random number sequences (sequence lengths, overlapping

sequences, correlation),
– efficiency,
– and memory consumption

22.10.2007 14

S-38.3148 Simulation of data networks / CNCL

Derived classes (1)

• CNLCG Linear Congruence RNG
– simplest pseudo random number generator
– may be used when performance is more important than perfect randomness

• CNMLCG Multiple Linear Congruence RNG
– combines the results of two different CNLCGs
– implementation taken from the GNU-library libg++
– fairly long period, and has been shown to give good intersample-independence

• CNACG Additive RNG
– high quality random number generator
– requires a fair amount of memory for each instance of the generator
– implementation taken from the GNU-library libg++

22.10.2007 15

S-38.3148 Simulation of data networks / CNCL

Derived classes (2)

• CNFiboG Fibonacci RNG
– high quality generator with a huge period (in the CNCL implementation period = 2127)
– relatively high memory usage

• CNFileG Data File RNG
– data file random number generator class
– reads random numbers from a disk file
– “good” file must have a sufficient size
– considerable memory usage and low speed can be expected when using this class

• CNTausG Tausworth RNG
– main advantage of this generator is that it can easily be implemented as a fast

hardware generator
– statistical tests have shown some flaws in this generator so that its use is not

recommended

22.10.2007 16

S-38.3148 Simulation of data networks / CNCL

Summary of random number generators

+++++++++++++++FiboG

+++1)+++ACG

+++++++++MLCG

++++++++++++LCG

Memory req.PerformancePeriod lengthRandomness

1) depends on table size

22.10.2007 17

S-38.3148 Simulation of data networks / CNCL

Example

CNFiboG rng1;

CNRNG *rng2 = new CNFiboG();

unsigned x1;

float x2;

double x3;

x1 = rng1.as_long(); // draw a random integer 0..2^31-1

x2 = rng2->as_float(); // draw a random float 0..1

x3 = rng2->as_double(); // draw a random double 0..1

delete rng2;

22.10.2007 18

S-38.3148 Simulation of data networks / CNCL

Random numbers with different distributions

• CNRandom is an abstract base class for different random number distributions
– common interface to access all derived RNG classes

• CNRandom provides
– a random number from the distribution

• CNRandom uses CNRNG
– CNRandom initialized with a pointer to the used pseudo random number generator

22.10.2007 19

S-38.3148 Simulation of data networks / CNCL

Derived classes

• CNBeta
• CNBinomial

• CNDeterm

• CNDiracTab
• CNDiscUniform

• CNErlang

• CNGeometric

• CNHyperExp
• CNHyperGeom

• CNInterTab

• CNLogNormal

• CNMDeterm
• CNNegExp
• CNNormal
• CNPoisson
• CNRandomMix
• CNRayleigh
• CNRice
• CNTab
• CNUniform
• CNWeibull

22.10.2007 20

S-38.3148 Simulation of data networks / CNCL

Example

CNRNG *rng = new CNFiboG();

double mean = 2.0;

CNNegExp rnd(mean, rng);

double x;

x = rnd(); // draw a neg. exp. distributed random number

delete rng;

22.10.2007 21

S-38.3148 Simulation of data networks / CNCL

Statistical evaluation

• CNStatistics is an abstract base class for all statistics classes
– defines a common interface

• CNStatistics allows
– to put a value for statistical evaluation
– to reset the evaluation

• CNStatistics provides e.g.
– mean and variance of the input sequence
– number of evaluated values
– minimum and maximum of all evaluated values

• Derived classes
– CNMoments
– CNMomentsTime
– CNConfidence
– CNHistogram
– (CNLREF, CNLREG, CNDLRE, CNBatchMeans)

22.10.2007 22

S-38.3148 Simulation of data networks / CNCL

Evaluation of moments for simulation data

• CNMoments provides e.g.
– mean
– variance and relative variance
– 2nd and 3rd zero moment
– 3rd central moment
– relative deviation
– skewness

• CNMomentsTime
– moments of a time-weighted input sequence
– useful for computing e.g. statistics of the queue length process

• CNConfidence
– usual non-parametric statistics + functions for computing confidence intervals

• CNHistogram
– support for computing histograms of sample statistics

22.10.2007 23

S-38.3148 Simulation of data networks / CNCL

Example(s)

CNMoments m;

double x;

double y;

m.put(2.0);

m.put(3.4);

m.put(5.1);

x = m.mean();

y = m.variance();

cout << m;

CNMomentsTime m;

double x;

double y;

m.put(2.0, 1.0);

m.put(3.4, 2.0);

m.put(5.1, 3.0);

x = m.mean();

y = m.variance();

cout << m;

22.10.2007 24

S-38.3148 Simulation of data networks / CNCL

Container classes

• Container classes work with pointers to CNObject

• Generic data structures
– CNAVLTree AVL balanced tree structure
– CNSLList Single Linked List of Objects
– CNDLList Double Linked List of Objects
– also iterators for lists

• Queue objects
– CNQueueFIFO FIFO Queue
– CNQueueLIFO LIFO Queue
– CNQueueRandom Random queue
– CNQueueSPT Shortest Processing Time queue (only for CNJobs)
– CNPrioQueueFIFO FIFO priority queue

• Other classes
– CNSink Queue that deletes all inserted jobs

22.10.2007 25

S-38.3148 Simulation of data networks / CNCL

FIFO queue

CNQueueFIFO queue;

CNJob* in_job = new CNJob;

CNJob* out_job;

queue.put(in_job);

.

.

out_job = queue.peek(); //job not removed from queue

.

.

out_job = queue.get(); //job is removed from queue

delete out_job;

22.10.2007 26

S-38.3148 Simulation of data networks / CNCL

Job

• CNJob (derived from CNObject) is a standard object for CNCL queues

• CNJob provides e.g. the following public member variables:
– CNSimTime in // enter system

– CNSimTime start // service begins

– CNSimTime out // leave system

– int priority // priority of job

• Useful for example when recording sojourn times

22.10.2007 27

S-38.3148 Simulation of data networks / CNCL

Example

CNMoments m_queue;

CNMoments m_total;

CNJob *job = new CNJob;

.

.

job->in = now(); // job arrives at the queue

.

.

job->start = now(); // service begins

.

.

job->out = now(); // service ends

m_queue.put(job->start - job->in);

m_total.put(job->out - job->in);

delete job; // job is no longer needed

22.10.2007 28

S-38.3148 Simulation of data networks / CNCL

Scheduler

Generator Server

JOB JOB

TIMER_G TIMER_S

Event driven simulation

• Event Handlers: Generator, Server
• Events: TIMER_G, TIMER_S, JOB

• Event Scheduler

22.10.2007 29

S-38.3148 Simulation of data networks / CNCL

Event handlers

• Derived from class CNEventHandler

– state machine that receives and processes events

– user implements event handling method: void event_handler(const CNEvent *ev)

– executed routine depends on the state of the event handler and the type of the
incoming event

– may generate new events and change state

– resembles a process

22.10.2007 30

S-38.3148 Simulation of data networks / CNCL

Example

Class Generator : public CNEventHandler {

private:

.

.

public:

.

.

};

void Generator::event_handler(const CNEvent *ev)

{

switch (ev->type())

{

.

.

}

};

22.10.2007 31

S-38.3148 Simulation of data networks / CNCL

Events

• Class CNEvent
– data structure representing events in the simulation

• Includes
– type
– priority
– sending time and scheduled time
– sending and receiving event handlers
– unique identifier
– pointer to an arbitrary CNCL object

• Note! CNEvents are created with new operator, but they do not need to be
explicitly deleted by user (scheduler takes care of that).

22.10.2007 32

S-38.3148 Simulation of data networks / CNCL

Example

CNEvent *ev;

CNRandom *rnd;

Server *server; // another event handler

...

ev = new CNEvent(EV_TIMER_G);

send_delay(ev, rnd()); // send to myself as default

...

ev = new CNEvent(EV_JOB, server, new CNJob);

send_now(ev); // send without delay

...

send_delay(new CNEvent(EV_TIMER_G), rnd());

22.10.2007 33

S-38.3148 Simulation of data networks / CNCL

Event scheduler

• Operation
– controls the simulation run
– receives events
– orders events in the increasing order of time stamp and decreasing order of priority
– passes events to the addressed event handlers
– deletes all created CNEvent objects

• Two variants
– CNEventScheduler

• guarantees that events are processed in FIFO order even when time and priority
compare equal

• slow if nof managed simultaneous events grows large
– CNEventHeapSched

• more efficient than CNEventScheduler, but cannot guarantee FIFO processing if
time and priority of events are equal

22.10.2007 34

S-38.3148 Simulation of data networks / CNCL

Examples

main()

{

...

CNEventScheduler scheduler;

scheduler.start(new CNEvent(EV_TIMER_G,

&generator, 0.));

}

main()

{

...

CNEventScheduler scheduler;

scheduler.send_event(new CNEvent(EV_TIMER_G,

&generator, 0.));

scheduler.start();

}

22.10.2007 35

S-38.3148 Simulation of data networks / CNCL

Simulation time

• Note! Simulation time is accessible only in EventHandler – classes
– in fact, only in the EventHandler –method!!!!

• Within such classes, simulation time is accessed with ”now()” – method call
– each event handler has inherited this method from the base class CNEventHandler
– the method ”now()” works properly only within the EventHandler -method

