
21.11.2007 1

S-38.3148 Simulation of data networks / fall-07

Part 3: Network Simulator – 2

21.11.2007 2

S-38.3148 Simulation of data networks / ns2

NS2: Contents

• NS2 – Introduction to NS2 simulator

– Background info

– Main concepts, basics of Tcl and Otcl

– NS2 simulation building blocks

• Some NS2 examples

• NS2 project work instructions

21.11.2007 3

S-38.3148 Simulation of data networks / ns2

References

Material based on following sources:

1. Haobo Yu, Nader Salehi, “NS2 tutorial”, IEC'2000 ns workshop, San Diego,
USA, June 2000.

2. John Heideman, ”IPAM tutorial: Network modeling and traffic analysis with ns-2”,
presentation at the UCLA/Institute for Pure and Applied Mathematics, Los
Angeles, USA, March 2002.

Both available from

– http://www.isi.edu/nsnam/ns/ns-tutorial/index.html

21.11.2007 4

S-38.3148 Simulation of data networks / ns2

What is NS2?

• Short characterization
– discrete event network simulator
– packet-level
– link layer and up
– wired and wireless

• A collaborative simulation platform
– freely distributed, open source
– developed by researchers in universities and research institutes

– provide common reference ÿ promote sharing
– test suites ÿ increase confidence in results

• Intended users
– researchers
– developers
– educators

21.11.2007 5

S-38.3148 Simulation of data networks / ns2

History and status

• Brief history
– REAL simulator by UCB (1989)
– ns1 (Floyd and McCanne, then at LBL)
– ns2

• VINT project (Virtual InterNet Testbed)
• LBL, PARC, UCB, USC/ISI

– currently maintained at USC/ISI, with input from K. Fall, S. Floyd et al.

• Status
– size: > 200k loc (lines of code) of C++ and Tcl, 350 page manual
– user base: >1k institutions, >10k users
– platforms: (almost) all Unix and Windows

• Windows needs some manual work, Unix (Linux) is the preferred platform
– releases about every 6 months, plus daily snapshots of the CVS archive

• current version ns-2.30, released Sept ‘06

21.11.2007 6

S-38.3148 Simulation of data networks / ns2

NS components

• ns, the simulator itself

• nam, the Network AniMator
– for visualizing ns output
– GUI for simple ns scenarios

• Pre-processing
– traffic and topology generators

• Post-processing
– simple trace analysis
– using Awk, Perl, or Tcl

21.11.2007 7

S-38.3148 Simulation of data networks / ns2

NS models

• Traffic models and applications
– web, FTP, telnet, constant bit rate, on-off

• Transport protocols
– unicast: TCP (Tahoe, Reno, Vegas, …), UDP
– multicast: SRM

• Routing and queuing
– wired routing (unicast, multicast), ad hoc routing, Mobile IP
– queuing models: drop tail, RED, fair queuing

• Physical media
– wired (point-to-point, LANs), wireless (multiple propagation models), satellite

21.11.2007 8

S-38.3148 Simulation of data networks / ns2

Installation

• http://www.isi.edu/nsnam/ns/
– for easy installation, download ns-allinone
– includes Tcl, Otcl, TclCL, ns, nam, etc.
– to optimize size, it is possible to compile from pieces (see URL for details)

• Mailing list: ns-users@isi.edu
– “subscribe ns-users” in body
– for archive of mails see URL

• Documentation (on web at URL above)
– Marc Greis tutorial
– ns manual

21.11.2007 9

S-38.3148 Simulation of data networks / ns2

NS2: Contents

• NS2 – Introduction to NS2 simulator

– Background info

– Main concepts, basics of Tcl and Otcl

– NS2 simulation building blocks

• Some NS2 examples

• NS2 project work instructions

21.11.2007 10

S-38.3148 Simulation of data networks / ns2

NS architecture (1)

• Object-oriented & modular
– pros: code reuse (e.g., TCP variants), maintenance
– cons: performance (speed and memory), careful planning of modularity

• Software structure
– uses two languages: C++ and OTcl (Object TCL)

• to achieve separation of control- and packet level
– C++ for packet processing

• fast execution, detailed, full control over execution
• to make simulator scalable, packet processing must be done at C++ level

– OTcl for control
• simulation setup, configuration, occasional actions (e.g., creating new TCP flows)

– compromise between speed and abstraction level(s) offered to the user
– draw back: need to learn two languages and debug in two “worlds”

21.11.2007 11

S-38.3148 Simulation of data networks / ns2

NS architecture (2)

• Architecture aims at scalability and easy extensibility

• Scalability
– per packet actions need to be implemented such that execution is quick
– achieved by separating control and packet handling

• Extensibility
– must be “easy” for users to add own objects and functionality
– fine-grained object composition:

• basically, easy to understand role of each object and to identify which object(s) to
modify

– split C++/OTcl objects:
• do not have to change anything at C++ level if new functionality only needed at

OTcl level

21.11.2007 12

S-38.3148 Simulation of data networks / ns2

OTcl and C++: the duality

• OTcl and C++ share class hierarchy

• TclCL-library implements mechanisms that make sharing of functions, variables,
etc., possible between C++ code and OTcl

C++ OTcl

Pure C++
objects

Pure OTcl
objects

C++/OTcl split objects

21.11.2007 13

S-38.3148 Simulation of data networks / ns2

Software architecture

• OTcl: object-oriented Tcl

• TclCL: C++ and OTcl linkage

• Discrete event scheduler

• Data network components
– link layer and up
– emulation support Tcl

OTcl

TclCL

ns-2

E
vent

S
cheduler

Network
Components

C/C++

21.11.2007 14

S-38.3148 Simulation of data networks / ns2

Hello World!

simple.tcl
Create the simulator object and assign it name “ns”

set ns [new Simulator]

Schedule event at time 1 to print Hello World!

$ns at 1 “puts \“Hello World!\””

... and exit at time 1.5

$ns at 1.5 “exit”

Run the simulation

$ns run

swallow 74% ns simple.tcl

Hello World!
swallow 75%

21.11.2007 15

S-38.3148 Simulation of data networks / ns2

Basic tcl

Variables:
set x 10

puts “x is $x”

Functions and expressions:
Set y [pow $x 2]
Set y [expr $x*$x]

Control flow:
if {$x > 0} {return $x} else

{return [expr -$x]}

while {$x > 0} {
puts $x
incr x –1

}

for {set i 0} {$i < 10} {incr i}
{puts $i}

Procedures:
proc fact {n} {

if {$n == 1} {
return 1

} else {
expr $n*[fact [incr n –1]]]

}
}

proc sum {} {
global a b
expr $a+$b

}

Tcl benefits:
• Tcl also contains lists, arrays, etc.
• Can use a real programming language to

construct topologies, traffic sources,
applications, etc.

21.11.2007 16

S-38.3148 Simulation of data networks / ns2

Basic OTcl

Class Person

constructor

Person instproc init {age} {

$self instvar age_

set age_ $age

}

method greet

Person instproc greet {} {

$self instvar age_

puts "$age_ years old: How
are you doing?"

}

Class Kid -superclass Person

new greet-method

Kid instproc greet {} {

$self instvar age_

puts "$age_ years old kid:

What's up, dude?"

}

set person [new Person 45]

set kid [new Kid 15]

$person greet

$kid greet

ÿ Can easily make variations of existing objects (e.g., TCP variants)

21.11.2007 17

S-38.3148 Simulation of data networks / ns2

NS2: Contents

• NS2 – Introduction to NS2 simulator

– Background info

– Main concepts, basics of Tcl and Otcl

– NS2 simulation building blocks

• Some NS2 examples

• NS2 project work instructions

21.11.2007 18

S-38.3148 Simulation of data networks / ns2

Elements of ns2

• Assumption:
– we only consider wired simulations (without routing)

• Important elements:
– Create the event scheduler and random number generator

– Create network
• nodes and links

– Create transport connection
• TCP, UDP

– Create applications
• CBR, FTP

– Setup tracing
• trace queues and flows

21.11.2007 19

S-38.3148 Simulation of data networks / ns2

Creating the event scheduler

• Create event scheduler
set ns [new Simulator]

• Schedule events
$ns at <time> <event>

– <event>: any legitimate ns/tcl commands

• Start scheduler
$ns run

21.11.2007 20

S-38.3148 Simulation of data networks / ns2

Creating random number generators (1)

• Random number generator based on MRG32k3a generator (L’Ecuyer, 1999)

• Creating a pseudo random number generator with seed
set rng [new RNG]

$rng seed 12345

– Note: seed 0 uses a heuristic seeding method (non-deterministic seed)

• Choosing the next independent random number stream
$rng next-substream

– This is good for controlling independent replications
– Altogether 2.3*1015 independent streams, each with 7.6*1022 different numbers

21.11.2007 21

S-38.3148 Simulation of data networks / ns2

Creating random number generators (2)

• Generating rv’s from other distributions can be done in two ways

• Using the class RNG
– uniform rv’s: $rng uniform a b, $rng integer k

– exponential (with average 1): $rng exponential

• Using the class RandomVariable
– available distributions: uniform, exponential, hyper-exponential, Pareto
– example: hyper-exponential

Create and configure generator

set hypexp [new RandomVariable/HyperExponential]

$hypexp set avg_ 10

$hypexp set cov_ 2

Draw values

$hypexp value

21.11.2007 22

S-38.3148 Simulation of data networks / ns2

Creating the network

• Nodes
set n0 [$ns node]

set n1 [$ns node]

• Links and queuing
$ns duplex-link $n0 $n1 <bandwidth> <delay> <queue_type>

– <queue_type>: DropTail, RED, CBQ, FQ, SFQ, DRR
– example: link with 10 Mbps, 10 ms delay, buffer size 100, RED buffer control

$ns duplex-link $n0 $n1 10Mbps 10ms RED
Set queue size
$ns queue-limit $n0 $n1 100
Set RED parameters
set redq [[$ns link $n0 $n1] queue]
$redq set thresh_ 0
$redq set maxthresh_ 100
$redq set linterm_ 20
$redq set mean_pktsize_ 500
$redq set q_weight_ 0.001

21.11.2007 23

S-38.3148 Simulation of data networks / ns2

Creating connections: UDP

• UDP
set udp [new Agent/UDP]

set null [new Agent/Null]

$ns attach-agent $n0 $udp

$ns attach-agent $n1 $null

$ns connect $udp $null

• All above combined into one command:
– Format:
$ns create-connection <src_type> <src_node> <dst_type> <dst_node>

<packet_class>

– Example:
$ns create-connection UDP $n0 Null $n1 1

21.11.2007 24

S-38.3148 Simulation of data networks / ns2

Creating traffic: on top of UDP

• CBR (Constant Bit Rate)
set src [new Application/Traffic/CBR]

• Exponential or Pareto on-off
– on/off times exponentially/Pareto distributed
set src [new Application/Traffic/Exponential]

set src [new Application/Traffic/Pareto]

• Connecting application to transport
$src attach-agent $udp

– “$udp” defined earlier

• Above are only traffic sources for a single user
– ns2 does not provide much support for generating background (aggregate) traffic
– for example, generating pure GI/GI/1 – type traffic needs to be done “manually” (either

at C++ or OTcl level)

21.11.2007 25

S-38.3148 Simulation of data networks / ns2

Creating Connection: TCP

• TCP
set tcp [new Agent/TCP]
set tcpsink [new Agent/TCPSink]

$ns attach-agent $n0 $tcp
$ns attach-agent $n1 $tcpsink
$ns connect $tcp $tcpsink

• … or above in one command:
$ns create-connection TCP $n0 TCPSink $n1 1

• Different TCP variants:
– TCP = Tahoe TCP (slow start, AIMD)
– TCP/Reno = Reno TCP (above + fast retransmit/fast recovery)
– TCP/NewReno = modified Reno TCP with improved fast retransmit
– TCP/Sack1 = SACK TCP (selective ACK)
– other sources: TCP for asymmetric links (wireless), RTP source, RTCP source
– different sinks: for each TCP type, LossMonitor (sink with packet loss monitoring)

21.11.2007 26

S-38.3148 Simulation of data networks / ns2

Creating traffic: on top of TCP

• FTP
set ftp [new Application/FTP]

$ftp attach-agent $tcp

• Telnet
set telnet [new Application/Telnet]

$telnet attach-agent $tcp

21.11.2007 27

S-38.3148 Simulation of data networks / ns2

Starting/stopping traffic agents

• Starting and stopping times scheduled as events to the scheduler
$ns at <time> <event>

• Starting
$ns at 1.0 “$ftp start”

– greedy source (sends infinitely long)
– similarly for CBR, telnet and on/off sources

• Stopping
$ns at 5.0 “$ftp stop”

– similarly for CBR, telnet and on/off sources

• Sending for example 1000 packets (only for FTP!)
$ns at 7.0 “$ftp produce 1000”

21.11.2007 28

S-38.3148 Simulation of data networks / ns2

Creating Traffic: Trace Driven

• Trace driven
set tfile [new Tracefile]

$tfile filename <file>

set src [new Application/Traffic/Trace]

$src attach-tracefile $tfile

• <file>:
– each record consists of two 32 bit fields
– inter-packet time (msec) and packet size (byte)

21.11.2007 29

S-38.3148 Simulation of data networks / ns2

Tracing

• Trace packets on all links of the network
$ns trace-all [open test.out w]

• Turn on tracing on specific links
$ns trace-queue $n0 $n1

• Tace format:
+ 0.89456 0 2 cbr 210 ------- 0 0.0 3.1 0 0
- 0.89456 0 2 cbr 210 ------- 0 0.0 3.1 0 0
r 1.00234 0 2 cbr 210 ------- 0 0.0 3.1 0 0

– event type: (enque = +, deque = -, receive = r, drop = d)
– event time
– node ids of traced link (2 fields)
– name of packet (“source’s name”)
– packet size
– flags (not used here)
– flow identifier
– source/destination addresses (2 fields)
– sequence number
– unique packet identifier (all packets created in the simulation have a unique id)

21.11.2007 30

S-38.3148 Simulation of data networks / ns2

Monitoring

• Sometimes tracing produces “too much” data
– e.g., just want to know number of arrivals or dropped packets on a link or per flow

• Queue monitors
– E.g. you only want to monitor the queue length on the link between n0 and n1
– Prepare the queue for monitoring

set interval 0.01

set qm [$ns monitor-queue $n0 $n1 stdout $interval]

– To read the counters maintained by queue monitor object one needs a procedure to
read the counters and to separately schedule the procedure!!!

• Flow monitors
– enable flow monitoring

set fmon [$ns makeflowmon Fid]
$ns attach-fmon [$ns link $n0 $n1] $fmon

– count arrivals and drops for flow with id xx
set fclassifier [$fmon classifier]
set flow1 [$fclassifier lookup auto 0 0 xx]
set parr [$flow1 set parrivals_]

set pdrops [$flow1 set pdrops_]

21.11.2007 31

S-38.3148 Simulation of data networks / ns2

Summary: generic script structure

set ns [new Simulator]

[Turn on tracing]

Create topology

Setup packet loss, link dynamics

Create routing agents

Create:

- multicast groups

- protocol agents

- application and/or setup traffic sources

Post-processing procs

Start simulation

21.11.2007 32

S-38.3148 Simulation of data networks / ns2

Where to look for information?

• NS2 manual

– http://www.isi.edu/nsnam/ns/ns-documentation.html

– big document, can download into own directory to make accessing faster

• Daily snapshot of the class hierarchy

– http://www-sop.inria.fr/planete/software/ns-doc/ns-current/

– good source of information, can see the whole class hierarchy with one “snap shot”

21.11.2007 33

S-38.3148 Simulation of data networks / ns2

If you need to view the C++/OTcl code…

• Viewing code is one way to find out how things work
– manuals often don’t explain everything
– want to see, e.g., what variables are visible in OTcl from C++

• All paths given here are relative to your ns2 top directory
– here we assume it is ns-allinone-2.1b9a

• C++ code:
– /ns-allinone-2.1b9a/ns-2.1b9a/

• OTcl
– /ns-allinone-2.1b9a/ns-2.1b9a/tcl/lib

• ns-default.tcl (contains all default values of ns2-objects)
• also OTcl definitions of many other basic objects used during simulations

– /ns-allinone-2.1b9a/ns-2.1b9a/tcl
• most specialized objects under sub-directories

21.11.2007 34

S-38.3148 Simulation of data networks / ns2

Other functionality, but not covered here…

• In ns2
– link level errors (error modules for generating random packet corruptions)
– LAN simulations (including WLAN/IEEE 802.11)
– routing
– multicast
– Mobile IP
– DiffServ

• Visualization tools
– mobility patterns

• cbrgen.tcl for creating connections (CBR/TCP)
• setdest-program for generating node movement patterns (RWP mobility model)

– nam-1 (Network AniMator Version 1)
• packet-level animation
• well supported by ns

– xgraph
• conversion from ns trace to xgraph format

