NS2: Contents

- NS2 Introduction to NS2 simulator
- Some NS2 examples

- RED example

- Enhanced RED example
- NS2 project work instructions

21.11.2007

1

S-38.3148 Simulation of data networks / ns2

Example 1

- Task
 - simulate a queue operating under RED control
 - using elementary topology
 - traffic is a superposition of greedy TCP sources
 - measure instantaneous queue length
 - file: redtcp.tcl

Running the tcl-scripts (1)

- Ns2 is not installed in the machines of B215
- Ns2 can be found on the Linux machines in Maarintalo (maintained by Computing Center)
 - rooms Maari A and Maari C
- Take a remote connection to one of the Linux machines in Maari A/C
 E.g., listing of the machines in Maari A can be found from

http://www.hut.fi/atk/luokat/Maari-A.html

- Save the example ns2/tcl files from course homepage in your directory
 - Example 1: redtcp.tcl
 - Example 2: redtcpmain.tcl and redtcpsub.tcl

21.11.2007

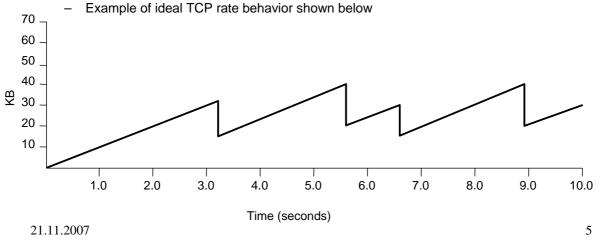
3

S-38.3148 Simulation of data networks / ns2 $\,$

Running the tcl-scripts (2)

- In order to be able to use ns2, you first have to do the following
 - Type in your shell

source /p/edu/s383148/usens2.csh


- This file contains the required settings for environment variables
- Give this command each time you start an ns2 session in a shell
- After that you can use ns2 simply by writing in your shell

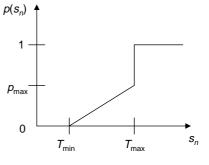
ns my_script.tcl

- Top directory where ns2 source files are is:
 - /p/edu/s383148/ns-allinone-2.31

TCP

- Provides reliable file transfer over Internet
- Includes functionality for congestion control
 - contains many sophisticated algorithms for realizing congestion control
 - Basic idea: increase rate slowly, but decrease quickly when facing congestion
 - Congestion detected from packet losses (i.e., TCP only reacts to losses)

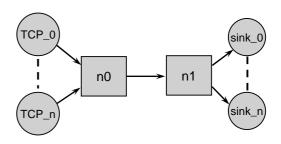
S-38.3148 Simulation of data networks / ns2 $\,$


RED

- RED (Random Early Detection/Drop)
 - Active Queue Management (AQM) method proposed by S. Floyd
 - designed to cooperate with TCP-friendly congestion control
 - tries to prevent buffer overflows by discarding packets prior to the buffer becoming full
 - TCP friendly rate control reacts to packet losses and (some) sources slow down their sending rates ⇒ serious congestion is avoided
 - packet dropping probability depends on load
- RED algorithm (approximately)
 - for each arriving packet, compute exponentially averaged queue length (\approx load), s_n

$$s_n = (1 - \beta)s_{n-1} + \beta q_n$$

- drop packet with probability


$$p_{n} = \begin{cases} 0, & s_{n} < T_{\min} \\ \frac{p_{\max}(s_{n} - T_{\min})}{T_{\max} - T_{\min}}, & T_{\min} \le s_{n} \le T_{\max} \\ 1, & s_{n} > T_{\max} \end{cases}$$

21.11.2007

Simulator objects for example 1

- Traffic sources
 - greedy TCP Reno sources (constantly sends traffic)
 - need to create a TCP connection and attach an FTP agent to the TCP source
 - parameters
 - nof of sources
 - maximum window size
 - segment size
- Bottleneck link
 - finite buffer with RED queue
 - parameters
 - queue size
 - RED parameters
- Required traffic objects (topology)
 - 2 nodes
 - 1 link (with RED queue)
 - N TCP sources (source/sink)

7

S-38.3148 Simulation of data networks / ns2

Tracing for example 1

• Aim:

21.11.2007

- trace the variable that represents instantaneous queue length
- See red.h (in /p/edu/s383148/ns-allinone-2.31/ns-2.31/queue/)
 - variables with type TracedInt (or TracedDouble, etc.) are variables defined in the C++ class that are also visible at the OTcl level
 - to find out what traced variables are defined for RED queue (run in above directory)

fgrep Traced red.h

- variable "TracedInt cur_" represents instantaneous queue length (as seen by an arriving packet)
- Creating a trace object
 - create file for output and create a trace object (\$redobj represents a RED queue object)
 - set outfile [open data.txt w]

```
$redobj trace cur_
```

```
$redobj attach $outfile
```

1.11.2007 tracing started after warm-up time

Plotting the queue length process

- One can plot the realization of the queue length process
 - can experiment with RED parameters to examine stability, e.g., play with the averaging parameter q_weight_ and linterm_
 - example shows scenario where number of flows changes over time
- The output file contains rows with following entries:
 - Q 20.0041 11 Q 20.0151 9
 - Q 20.0225 10 ...
- Remove extra 'Q' from beginning of each line by:
 - from command line: awk '{print \$2, \$3}' qlen.dat > qql.dat
 - from ns2-tcl script: exec awk {{print \$2, \$3}} glen.dat > qq1.dat
- Plot the data in qq1.dat using xgraph
 - from command line: xgraph qql.dat
 - from n2-tcl script: exec xgraph qql.dat

21.11.2007

9

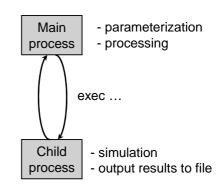
S-38.3148 Simulation of data networks / ns2

NS2: Contents

- NS2 Introduction to NS2 simulator
- Some NS2 examples
 - RED example
 - Enhanced RED example
- NS2 project work instructions

Example 2

- Task
 - measure the steady state mean of the instantaneous queue length as a function of offered load
- We need to ...
 - be able to run consecutive independent simulations, and
 - compute steady state mean from the measured data
 - files: redtcpmain.tcl and redtcpsub.tcl


21.11.2007

11

S-38.3148 Simulation of data networks / ns2 $\,$

Running independent simulations

- To run independent simulations, we must either be able to ...
 - re-initialize all simulator objects (simulation clock, event scheduler, all traffic objects, etc.), or somehow re-execute simulation scripts
 - re-initializing in ns2 is difficult \Rightarrow we need to make repeated executions of ns2 scripts
- In Unix, the operating system executes each Tcl/ns2 script as a process
- For repeated simulations we need ...
 - a main program that controls and parametrizes simulations, and a sub-program that executes each simulation run
 - in unix terminology, we need a main process that spawns a child process for execution of the actual simulation runs
 - in Tcl (and most script languages), the command for this is "exec ..."

Measuring time averages

- Post-processing
 - read data from output file and process it
 - in our case, output consists of tuples <Q, time, queue_len>
- Reading from file
 - open file for reading and read a line from the file

set \$outfile [open data.txt r]
gets \$outfile tmp

- To compute time average of the data, use Integrator class
 - creating and adding points

set integ [new Integrator]
\$integ newpoint \$time \$value

- variable sum_ contains cumulative sum

21.11.2007