S-38.3148 Simulation of data networks / ns2

NS2: Contents

- NS2 Introduction to NS2 simulator
- Some NS2 examples

• NS2 project work instructions

27.11.2007

1

S-38.3148 Simulation of data networks / ns2 $\,$

Introduction

- The ns2 assignment is about
 - 802.11 DCF MAC mechanism and
 - its interaction with higher layer protocols (UDP/TCP)
- Two traffic scenarios
 - Static:

802.11 MAC layer features

- 802.11 standard specifies two MAC mechanisms
 - PCF (Point Coordination Function): base station polls clients, not used in practice
 - DCF (Distributed Coordination Function): random access scheme, normally used in WLAN networks
- DCF features
 - Random access based on carrier sensing with guard intervals
 - Smaller guard intervals in channel access for small control packets (prioritized traffic)
 - Packets are acknowledged at the link layer and retransmitted in no ACK is received
 Exponential backoff
 - In wireless multihop networks additional problems occur due to hidden/exposed nodes
 - RTS/CTS handshake before data transmission
- In our scenario we will not use RTS/CTS
 - We only have base station with clients

27.11.2007

3

S-38.3148 Simulation of data networks / ns2

802.11 DCF example

Timeline

Transport layer features

- We will use both UDP and TCP transport protocols
 - UDP does not really add anything, one must anyway use a traffic source on top of UDP

• TCP features

- Implements reliable transport
 - Receiver sends ACKs
 - Bi-directional communication
- Window based flow/congestion control
 - Window size defines an upper bound on the number of unacknowledged packets that can be in the network
 - Transmission rate ~ window/RTT
- TCP congestion control principles
 - · Idea: modify window size adaptively based on "available capacity"
 - AIMD: window grows linearly until at packet loss it is halved
- Fairness: TCP fairness results from the principle that packets can be only sent after receiving ACKs (if ACKs stop coming nothing can be sent)
 - Self-clocking mechanism

27.11.2007

5

S-38.3148 Simulation of data networks / ns2 $\,$

Tasks with static traffic

- In these tasks the aim is to investigate the efficiency of 802.11 DCF mechanism with different transport protocols
 - Performance depends on packet size and properties of UDP/TCP
- Task 1
 - Simulate a greedy CBR source over 802.11
 - Measure the throughput
 - Requires analysis of the trace file
 - Parameter: packet size
 - Skeleton file: task-1.tcl
- Task 2
 - Use a greedy TCP source over 802.11
 - Measure the throughput
 - Measuring more easy
 - Parameter: packet size
 - Skeleton file: task-2.tcl

Task 3: flow level simulation (1)

- Flow-level model
 - Model for elastic traffic (file transfers as controlled e.g. by TCP)
 - Dynamioc system with randomly arriving flows sharing the resources, the flows have random sizes
 - Performance = mean time to transmit whole file or average throughput
 - Models the performance of data traffic
- Task 3
 - We simulate random TCP flows/file transfers over 802.11
 - Requests for file transfers arrive according to a Poisson process with rate λ
 - Theoretical capacity C = 11 Mbps
 - Mean file size B = 400 packets (exponentially distributed), packet size 1460B (+ 40B of IP overhead)
 - Study mean file transfer delay as a function of load, $\rho = \lambda * (B / C)$

27.11.2007

7

S-38.3148 Simulation of data networks / ns2

Task 3: flow level simulation (2)

- Idealized model for TCP
 - Assume that TCP shares bandwidth perfectly fairly (ok in our case)
 - Rate adaptation is instantaneous
 - with N(t) flows in system, each flow always gets C/N(t)
 - Flows arrive according to a Poisson process
 - \Rightarrow Processor sharing model
 - The system is stable if $\rho < 1$ (i.e., the mean delay $< \infty$)
 - Compare the simulations with TCP over 802.11 to above idealized system
- Schedule
 - 1st question session: Fri, 30.11., at 14 16, in Maari-M (Maarintalo)
 - 2nd question session: Tue, 11.12., at 14 16, in Maari-M (Maarintalo)
 - Deadline: Fri, 21.12., at 12:00

Task 3 skeleton

- Flow level simulations of TCP
 - event scheduling handled from Otcl level
 - scheduling concerns arrival and departure of flows
 - a skeleton code for handling this is given
 - the skeleton code is in file task-3.tcl
- Your task is to...
 - create the topology,
 - implement the main program for controlling the simulation,
 - implement the final computation of performance statistics

27.11.2007

9

S-38.3148 Simulation of data networks / ns2

Some hints for programming (1)

- Creating an array of TCPs
 - you can create an array in TCL without declaring it first
 - example: creating 10 TCPs, configuring them and storing them in the array tcp()

```
for {set nn 0} {$nn < 10} {incr nn} {
   set tcp_s($nn) [new Agent/TCP/Reno]
   $tcp_s($nn) set packetSize_ 1460
   $tcp_s($nn) set window_ 1000
   $tcp_s($nn) set fid_ $nn
   . . .
}</pre>
```

- multidimensional arrays: for example, \$tcp_s(2,3) = tcp-agent in class 2 and id 3

Some hints for programming (2)

- Accessing lists
 - lists can be initialized easily
 - operations for lists:
 - llength: length of the list
 - lindex : pick element at given index from the list
 - lappend : insert element
 - lreplace: search and replace

- Example:

set a {1 2 3 4}
set b [lindex \$a 1] (=> b = 2, indexing starts from 0)
lappend \$a 5 (=> a = {1 2 3 4 5})

27.11.2007