
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 1

Resource Consumption
and Fairness

Protocol Design – S-38.3157

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

Resource Consumption
Execution of protocols consumes resources in

End hosts
The network

Links
Network elements

Where resources are finite:
Use them for most important application objectives
Use them productively (throughput ≠ goodput)

Don’t perform a protocol step that cannot be completed for lack of other resources

Control of end system resources: implementation issue
Control of network resources: shared between hosts and network

Internet tenet: Network does not know about application!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

Case study: Internet congestion collapse
1988:

implementations sent data as they saw fit (BSD UNIX: LAN oriented)
Internet usage was growing
Where congestion occurred ➔ retransmissions ➔ more offered load

Previously non-congested links get congested, too
Collapse!

“Fixes” such as the Nagle algorithm only provided temporary relief

Issue: How to decide whether to send another packet?
Based on the existing network?
Based on an upgraded network that provided more information?
Based on administrative control (“reserved” capacity)?

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

Flashback: X.25
X.25 performed flow control per connection

Congestion: “Back-pressure” to previous network elements
Credit-based algorithm for per-connection network element buffer management

Why not do this for IP as well?
Network would have to know about application layer connections
Large systems: Hard to control phasing/oscillation effects

IP “back pressure”: ICMP Source quench
Send back information about congestion to source
“Request to slow down”
Issues:

Never quantitatively defined
Reverse congestion causes loss of source quench ➔ instability!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

Van Jacobson’s 1988 SIGCOMM paper
Congestion information has to be carried forward to receiver and
“reflected back”
Receiver is already sending ACKs for packets that have arrived
intact
Remaining “small problem”:

How to make use of that information in an effective control regime

(you know the rest)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

TCP Optimizations

Fast retransmission
using only timeouts leads to long idle times

implementations can’t estimate RTT that quickly (or don’t at all)

receivers react to segments received out-of-order
acknowledge last correctly received segment again
keep out-of-order segments

sender acts upon reception of three duplicate acks
retransmit first non-acknowledged segment
probably fills the (single segment) gap at the receiver

Fast recovery
duplicate ACKs indicate that most packets do get through (no timeout)
cut congestion window in half (instead of setting to 1 MSS)
don’t slow start

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

TCP Real-World Example

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

TCP Throughput Formula
TCP throughput = f(RTT, MSS, p)

Floyd approximation: Bit rate ~

Padhye equation (b is implementation constant, usually 2)

B(p) ≈ mss⋅min Wmax

RTT
, 1

RTT 2bp
3

+ T0min1,3 3bp
8

⎛

⎝
⎜

⎞

⎠
⎟ p 1+ 32p2()

⎛

⎝

⎜
⎜
⎜
⎜ ⎜

⎞

⎠

RTTp ×
1

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

TCP throughput vs. loss vs. RTT

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

TCP Congestion Control Summary
TCP’s additional algorithms control transmission rate

Quickly respond to packet losses in the network (AIMD)
Optionally, may take advance measure if increasing RTT is observed

TCP sender responds to incoming ACKs
Initiates transmissions or fast transmissions
“ACK Clocking”
Timeouts only used in rare circumstances if no packets get through

Resulting transmission rate approximated by Padhye equation
Measure for TCP fairness in the network

Fair sharing among TCP, UDP (e.g. RTP), and other flows

CC may also be implemented as rate-based algorithm
E.g. TCP-friendly Rate Control (TFRC)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

TCP-Friendly Rate Control (TFRC)
Rate calculated at the sender

Based on a slight simplification of the Padhye equation
Closed loop algorithm

Assumptions and Features
Usable only for streams with roughly constant packet size
Smoother reaction to congestion (does not half the rate upon loss)
Applicable to e.g. audio / video traffic
Not generally recommended for plain bulk data transfer

Receiver provides feedback about loss event rate (p) and RTT
Provided about once per RTT (unless fewer data is sent)
Includes Explicit Congestion Notification (ECN) as observed loss

Sender adjusts transmission rate according to feedback

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Basic TFRC Operation
Sender

Sends DATA packets
Sequence number, time stamp, current RTT estimate

Measures RTT from received feedback
Calculates weighted moving average

Calculates sending rate from received feedback
Adjusts transmission rate based upon feedback

Cuts rate in half if no feedback received for 2*RTT
Rate increase limited to factor 2 per RTT

Receiver
Receives data packets, observes timing, losses
Aggregates individual losses per RTT into loss events
Return feedback frequently to sender

Sequence number, sender + reception timestamp (adjusted according to local delay)
Weighted packet loss event rate p

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

Congestion Control without Reliability
Rate-based congestion control using TFRC

Requires regular and timely feedback from receivers: order of once per RTT

Example: Datagram Congestion Control Protocol (DCCP)
Non-reliable transport protocol supporting congestion control

Was meant to address congestion-unaware UDP applications

No fixed congestion control scheme: uses pluggable modules instead
CCID2: TCP-like, CCID3: TFRC

Example: TFRC Profile for RTP
Needs RTT readings at both sender and receiver

Sender calculates RTT and informs receiver

Introduces non-backward-compatible extensions to RTP and RTCP
New RTP profile: AVPCC

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

Application Layer Congestion Control
End-to-end principle: transport layer has only partial knowledge

Typical assumption: continuous data transfer (“big file”)

Unrealistic for many applications
Short message exchanges
Transport does not know much data outstanding for transmission

Application semantics may implicitly provide congestion control
Lock-step protocols

SIP transactions in a dialog, e.g., MESSAGE exchanges
TFTP
Original NFS

Anything beyond simple lockstep requires careful thought
So: Don’t try this at home: difficult to get it right…

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

15

What if we can modify the network?
But why bother (what are the remaining problems)?

At low throughput, congestion signalling is wasteful
(all the dropped packets are non-productive)

ECN: Explicit Congestion Notification

At high throughput, the signalling rate is low ➔ slow convergence
Start at a higher rate (initial window ≅ 4 KB, RFC 3390)
Get more information about the path from the outset (“Quickstart”)

A congestion loss cannot be distinguished from a corruption loss
Corruption losses lead to lower throughput

(problem only if the corruption losses are higher than the congestion loss equivalent to the
desirable throughput)

Hard to fix unless ECN became universally deployed
Would remove “emergency exit” packet drop from router’s choices

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

16

Quickstart
Idea: Let routers indicate available capacity
IP option used in TCP handshake indicates sender’s desired data rate

Each router in the path can reduce rate request to available capacity
Field is echoed back in SYN ACK at the transport layer (TCP option)
Also: use special Nonce to detect cheating in the receiver’s report

Backwards compatibility:
Find out if there are non-participating routers in the path

Send with random TTL, also send a random “Quickstart TTL”
Approving router decrements both IP TTL and “Quickstart TTL”
Difference between (reduced) TTLs is echoed back
Old routers change the difference ➔ Sender abandons Quickstart

Sender combines allowed rate with measured RTT to initialize congestion
window

Sends “Report approved rate” to allow on-path routers to reduce allocation
Packets are then sent rate-paced (no ACK clocking available)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

17

Guiding principles behind Quickstart
Backwards compatibility, allowing gradual introduction

Quickstart must only be enabled if all routers agree
Pre-Quickstart routers cannot agree, so any old router on path disables Quickstart

Special considerations for tunnels and initial packet losses/ECN indications

No incentive to cheat
Without the random nonces, a receiver could lie about

The fact that a quickstart rate was approved
The actual rate that has been approved

Make sure lying does not provide an advantage

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

18

ECN: Explicit Congestion Notification
Replace packet loss as a signal by a special bit in each packet

“This packet would have been lost”
Backwards compatibility:

Sender must indicate ECN capability of transport (ECT)
Non-ECT packets are dropped as previously usual

No incentive to cheat
Unmarked packets carry a bit that would be destroyed by marking

“ECN Nonce”, RFC 3540
Receivers echo back checksum (XOR value) of all these bits

Lying receiver is detected by sender detecting mismatch in Nonce echo

Two bits in IP packet, four values:
00 = old (non-ECT)
01, 10 = ECT (the two possible values carry one bit of ECN nonce)
11 = marked by router as “would have been lost” (destroys nonce bit)

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 19

That was too easy…

Multicasting
Security
Mobility

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

20

Congestion Control and Multicasting

S

R7 R8 R9R2 R3

R4

R1

R R

R R

R

R R5

R

R6

p=0.01
D=2ms

p=0.01
D=10ms

p=0.01
D=20ms

p=0.03

p=0.03p=0.05

p=0.08

p=0p=0.1
p=0.002

p=0.001

p=0.004p=0.01

p=0.02

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

21

Approaches to Multicast Congestion Control
Rate-based congestion control based upon feedback

E.g. using TFRC mechanism
TCP-friendly Multicast Congestion Control (TFMCC) Building Block
To be used e.g. with NORM, RTP, …
Feedback loop from many receivers to sender

Window-based mechanisms
TCP-style approach
Feedback loop from dedicated (possibly changing) receiver to sender

Layered coding
Receiver-based congestion control without feedback loop
Receivers use IP multicast JOIN / LEAVE to control their reception rate

Many of today‘s deployments don‘t use congestion control at all
Often deployed in controlled environment using a simple rate control

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

22

TFMCC
Principle operation borrows from TFRC

Uses same formula, similar state variables, etc.

But adjustments for multicast operation needed
Control the amount and type of feedback received
Distribute workload and amount of state to be maintained

Receiver-based operation
Receivers have unique identifiers
Data rate calculations done at receivers X_r

Receivers need to measure RTT to sender
Send feedback with timestamps, echoed back by sender

Packet loss rate calculations as before
Feedback suppression scheme for all but worst receiver

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

23

TFMCC (2)
Sender organizes feedback retrieval into rounds

Indicates feedback round number
Indicates Current Limiting Receiver (CLR)
Sender selects receivers to respond in each round

Receivers with measured RTT > MAX_RTT
Receivers with calculated rate X_r < X_supp (suppression threshold)

Includes reception timestamps for limited number of receivers
Enable RTT measurements

Sender uses feedback to update transmission rate
Update CLR based upon feedback from last round

Decreases in the transmission rate take effect immediately
Also takes into account CLR crashes (e.g. no reports for > 10 RTTs)

Cuts transmission rate in half if no report is received for 4 RTTs

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

24

PGMCC
Uses TCP-style window-based congestion control

Dynamically determines a receiver for the control loop
Selected receiver: “ACKer”
Aims to locate the receiver which would have the lowest throughput if there was
a TCP connection set up
Sender calculates transmission rate for each receiver based upon feedback

Using Padhye equation for TCP throughput

Chooses ACKer based upon this information
ACKer indicates if it is to leave the session

Feedback from this ACKer control transmission rate
Window-based scheme

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

25

Layered Coding
Multiple “layers” transmit data at different rates

Ordering / transmission rates need to be known up front

Very simple receiver loop
JOIN layer n
Observe reception rate, packet loss
If no packet loss: n=n+1
If congestion observed: LEAVE layer n, n=n-1

Past issue: LEAVE latency (IGMPv1 only)
Idea: transmit at constantly reducing data rate on each layer

Automatically makes reception rate drop to zero after some time
Congestion-free receivers continue JOINing new layers

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

26

Congestion Control and Security
Why would someone want to subvert Fairness?

Sender: deliver better service (at cost of other senders)
Network: deliver better service (at cost of other networks)
Receiver: receive better service (at cost of other receivers)
Sender: cause damage
Receiver: cause damage

Unlikely for large players (detection is almost assured)
Essentially rules out senders and network

Receiver:
„TCP optimization software“ to receive better service
(D)DoS sender by causing it to send to this receiver above fair share

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

27

Example: ACK attack
Observation: TCP ACKs are not protected (no nonce etc.)
Receiver could ACK everything (even if losses did occur)

Sender will ramp up quickly (exponential slow start) until first full RTT is lost
Not useful for receiving better service (there will be gaps)
Useful for causing damage

Why doesn’t this happen more often?
Changing OS’s TCP is hard work
There are easier angles of attack
It’s relatively easy to subvert a large number of consumer PCs (➔botnets)
It would be much harder to actually change all the various OS versions
Phew…

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

28

Congestion Control and Mobility
Path characteristics in the Internet change

Filling and emptying queues lead to delay variation
Queue length determine congestion-induced packet losses

Usually changes occur somewhat gradually
(relative to RTT)
Exception: route changes (rather infrequently, often involve other collateral damage)

Mobility may lead to more drastic changes
Due to mobile IP route optimization

From indirect path via home agent to shortest path between CN and MN
Due to handover of a mobile node moving between different stub networks
Due to a mobile node’s switching between different access technologies

Changes invisible to the transport
Present architecture assumes that (mobile) IP and transport layer don’t talk
Healthy: last hop may not be involved in mobility protocol

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

29

Mobility-induced Changing Path Properties (1)

Blue
Provider

Red
Provider

Home

Handoff Handoff Handoff
Handoff + Roaming

Correspondent
node

Newly introduced
Bottleneck link

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

30

Mobility-induced Changing Path Properties (2)

Blue
Provider

Red
Provider

Home
Correspondent

node

Newly introduced
Bottleneck link

GPRS WLANUMTS

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

31

Multi-attachment problem

Blue
Provider

Red
Provider

Home
Correspondent

node

Simultaneous attachment

GPRS WLANWLAN

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

32

Limitations to Congestion Control
Elastic applications

Typical reference: bulk data transfer
Not time critical + always data to send

Inelastic applications
Real-time media streams
Limited number of operational points
Reducing rate below minimum may equate loss of service

Example: File download and phone call share DSL access link
So what does “fairness” really mean here?

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

33

Concluding Thoughts
Congestion control is required

May serve the community (and you will get flak if you don’t)
May improve performance of your own application

Congestion scale may be limited by the application
Choice of (a few) discrete rates only
But: minimal QoS cannot be enforced by the application alone

