
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2006 Jörg Ott & Carsten Bormann 1

Introduction to Network
Programming

Assignment 1: uft

Slides partly prepared by Olaf Bergmann (Uni Bremen TZI)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

Starting Point
IDE

Unix/Linux available in the department
Alternative: cygwin (winsock vs. BSD)
Also: MacOS (which is Unix), MS Windows
Programming language: your choice
� Examples and hints will be given in C/C++

Information sources
Today’s slides and exercise
Details on the web page
man, info, Google
Newsgroup
Send mail (if everything else has failed)

GNU gcc, make, gdb, ...



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

The Goals
Workable software

Remember that you will need to build upon this later
Compiled and tested on the department workstations (Unix/Linux), on your 
laptop, or some other system accessible from the department via ssh
Learning: how to get there
Functionality: to actually arrive at a working solution

Documentation
Motivation + protocol documentation: explicitly as text or PDF
Code: Inline
Shows that you understood the problem and the solutions
Helps you to remember what you were thinking today in two months from now
Helps us to understand what you meant to do
→ There should be no “wrong” solutions (only malfunctioning ones)

Working with development tools
make, gcc, gdb, cvs/svn, (autoconf) ...

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

Program Structure
Start

End

Init

ProcessSummary

Wait

INT?

N

Y

Main loop
Manage socket descriptors (there will be many)
Read data
Create output
Signal and failure handling

Cleanup
Close all descriptors
Leave multicast groups (if any)
Free memory

Initialization
Parse the command line & arguments
Resolve hostname
Bind sockets, join multicast groups (if any)
Manage signal handling



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

Parse Command Line
int getopt(cnt,argv,optstring)

int oc;
while( (oc=getopt(argc,argv,"a:hi:sl:D:t:")) != EOF)
{

switch(oc) {
case 'a' : addAddress(optarg); break;
case 'h' : usage(); exit(0);
case 'i' : addInterface(optarg); break; 
case 's' : summary = true; break;
case 'l' : dumplen = strtol(optarg,NULL,10); break;
case 't' : controlAddress(optarg); break;
case 'D' : duration = strtol(optarg,NULL,10); break;
default :

opterr(oc);
}

}

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

Resolve hostname

Transform a symbolic name into a protocol-specific address
Ö Attention: different address formats and lengths

APIs
gethost*(), inet_aton(), inet_ntoa()
getaddrinfo(), inet_pton(), inet_ntop()

Ö old



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

The Old Stuff

gethostname (char *name_buffer, int buffer_length)
struct hostent *gethostbyname (char *namestr)
struct hostent *gethostbyaddr (struct sockaddr *, size_t, int); 

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

#define h_addr h_addrlist [0]
};

struct hostent *gethostent ();
endhostent ();

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

getaddrinfo

int getaddrinfo(host,server,hints,result)

struct addrinfo {
int ai_flags;      /* AI_PASSIVE, AI_CANONNAME,

AI_NUMERICHOST */
int ai_family;     /* PF_UNSPEC */
int ai_socktype;   /* SOCK_xxx */
int ai_protocol;   /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
size_t ai_addrlen;    /* length of ai_addr */
char *ai_canonname; /* canonical name for nodename */
struct sockaddr *ai_addr;      /* binary address */
struct addrinfo *ai_next;      /* next structure in linked list */

};

void freeaddrinfo(struct addrinfo *res);
const char *gai_strerror(int errcode);



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

Conversion functions (1)

Dotted decimal notation: aaa.bbb.ccc.ddd (IPv4 only)
in_addr_t inet_addr (char *buffer)
in_addr_t inet_aton (char *buffer)
char *inet_ntoa (in_addr_t ipaddr)

aaa.bbb.ccc.ddd (IPv4), aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh (IPv6)
int inet_pton(int af, const char *src, void *dst)
dst: in_addr or in6_addr

const char *inet_ntop(int af, const void *src, char *dst, size_t)
src: in_addr bzw. in6_addr
char dst[INET_ADDRSTRLEN]  bzw. char dst[INET6_ADDRSTRLEN]

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

Conversion Functions (2)

Network vs. Host Byte Order
All data in the network is sent as “Big Endian”
Conversion into local representation may be required
� needed on “Little-Endian” (LSB-first) architectures such as Intel
� is a no-op on MSB-first, but should always be done for portability

netshort = htons (hostshort) 16-bit value
netlong = htonl (hostlong) 32-bit value
hostshort = ntohs (netshort) 16-bit value
hostlong = ntohl (netlong) 32-bit value



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

BSD Socket Interface

The BSD mechanism for Inter-Process Communication (IPC)
Transparency between local and remote communications
Socket Descriptor: feels like file i/o or stdin/stdout

Support for different address families (some 30 in socket.h)
(Named) Pipes (e.g., AF_UNIX), ...
Internet Protocols (AF_INET, AF_INET6)
Other 

Crucial for the spreading of IP in the 1980s!
Supports different types of communications, u.a.

SOCK_STREAM: TCP SOCK_DGRAM:  UDP
SOCK_RAW: Raw IP SOCK_PACKET: Link-Layer-Frames

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Socket Creation

int socket(domain,type,proto)
int bind(sd,addr,addrlen)

int createSocket(const sockaddr_in &addr) 
{

int sd=socket(PF_INET,SOCK_DGRAM,0);
if (sd<0) return -1;

int yes = 1;
setsockopt(sd, SOL_SOCKET, SO_REUSEADDR, (char*)&yes, sizeof yes);
fcntl(sd,F_SETFL,O_NONBLOCK);
if (bind(sd,reinterpret_cast<const sockaddr *>(&addr),sizeof addr)<0) {

std::cerr << strerror(errno) << std::endl; 
return -1; 

}
return sd;

}

Socket domain
PF_INET, PF_INET6

Socket type
SOCK_STREAM, SOCK_DGRAM, …

Protocol
0 (any), 6 (tcp), 17 (udp)



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

Address Structures

Identification of a peer by means of IP address, port number, 
and protocol

struct sockaddr_in {
sa_family_t sin_family; 
in_port_t sin_port;
struct in_addr sin_addr;

};

IPv4 address (historically motivated, cumbersome)
struct in_addr {

in_addr_t s_addr;
};

struct sockaddr_in6 {
sa_family_t sin6_family; 
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;

};

IPv6 address (abbreviated)
struct in6_addr {

uint8_t     u6_addr8[16];
#define s6_addr in6_u.u6_addr8
};

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

Passive Waiting 

Data reception (UDP), accepting incoming connections (TCP)

bind (int sd, struct sockaddr *, socklen_t len);

UDP: done

TCP: enable connection setup from others
listen (int sd, in backlog);

Permits <backlog> pending connection setup requests in the kernel

setsockopt () and ioctl () to set further parameters
Buffer size, Type-of-Service, TTL, multicast addresses, ...



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

15

Connections (TCP)
connect (int sd, struct sockaddr *target, socklen_t len);

Creates (synchronously) a connection
Function call returns only when the connection is established, if a timeout 
occurs without response (may be several minutes), or possibly when ICMP 
error messages indicate failure (e.g., destination unreachable)
Option: TCP_NODELAY for asynchronous connection setup

Accepting an incoming connection (cannot reject anyway ☺)
new_sd = accept (int sd, struct sockaddr *peer, socklen_t *peerlen);

Creates a new socket descriptor for the new connection
The original one (sd) continues to be used for accepting further connections

Closing a connection
shutdown (int sd, int mode)
0: no further sending, 1: no further reception, 2: neither sending nor receiving
close(sd) to clean up – beware of data loss!

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

16

Sending Data
Connection-oriented (TCP)

write (int sd, char *buffer, size_t length);
writev (int sd, struct iovec *vector, int count);

� List of buffers, each with pointer to memory and length
send (int sd, char *buffer, size_t length, int flags)
� May be used for out-of-band data

Connectionless (UDP)
sendto (int sd, char *buffer, size_t length, int flags,

struct sockaddr *target, socklen_t addrlen)
sendmsg (int sd, struct msghdr *msg, int flags)

� Target address
� Pointer to the memory containing the data
� Control information



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

17

Receiving Data
Connection-oriented (TCP)

read (int sd, char *buffer, size_t length);
readv (int sd, struct iovec *vector, int count);
� List of buffers, each with pointer to memory and length

recv (int sd, char *buffer, size_t length, int flags)
� May be used for out-of-band data

Connectionless (UDP)
recvfrom (int sd, char *buffer, size_t length, int flags,

struct sockaddr *target, socklen_t addrlen)
recvmsg (int sd, struct msghdr *msg, int flags)

� Sender address
� Pointer to the data
� Control information

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

18

Further Functions
getpeername (int sd, struct sockaddr *peer, size_t *len)

Obtain the address of the communicating peer
getsockname (int sd, struct sockaddr *local, size_t *len)

Obtain the address of the local socket (useful if dynamically assigned)

Modify socket parameters
getsockopt (int sd, int level, int option_id, char *value, size_t length)
setsockopt (int sd, int level, int option_id, char *value, size_t length)

Examples:
� Buffer size, TTL, Type-of-Service, TCP-Keepalive, SO_LINGER, ...

ioctl (int sd, int request, ...);
fcntl (int sd, int cmd [, long arg] [, ...]);

� E.g., to control whether I/O is non-blocking



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

19

Multicast reception
Multicast JOIN
setsockopt (sd, IPPROTO_IP, IP_ADD_MEMBERSHIP, 
struct ip_mreq *mreq, sizeof (ip_mreq));

struct ip_mreq {
struct in_addr imr_multiaddr;     /* IP multicast address of 
group */
struct in_addr imr_interface;     /* local IP address of 
interface */

};

Multicast-LEAVE
setsockopt (sd, IPPROTO_IP, IP_DROP_MEMBERSHIP, struct
ip_mreq *mreq, sizeof (ip_mreq));

Optional: Allow repeated use of an address (needed for multicasting)
char one = 1;
setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof
(char))

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

20

I/O Multiplexing (select)

Calculate file descriptor sets (FDSET)
Determine earliest timeout
Call select()
Error?

Fatal → Terminate
Repairable (e.g. interrupted system call) → repeat

Timeout?
Timer handling; use struct timeval { … } to specify (sec, usec) pair
NULL pointer == blocking (no timeout), (0, 0) == polling

Success
Determine active file descriptors and handle events

int select(maxfdset,read,write,ext,timer)



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

21

fd_set Makros

fd_set wfdset;
FD_ZERO (&wfdset);
FD_SET (fd, &wfdset);
.
.
.

if (FD_ISSET(fd, &wfdset)) 
. . .

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

22

I/O Multiplexing (poll)

struct pollfd {
int fd; // file descriptor
int events;  // events to watch for
int revents; // occurred events

};
Poll events:

POLLIN input pending
POLLOUT socket writable (only needed with non-blocking i/o)
POLLHUP, POLLERR

Timeout is specified in milliseconds
-1 == no timeout, 0 == return immediately (perform real polling)

Handling otherwise identical to select()

int poll(pollfd,n_fd,timeout)



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

23

Timeouts (1)
Protocols use many timeouts

Will be set, reset, and canceled frequently
Must be implemented efficiently

select () and poll () allow you to specify one timeout
poll () in milliseconds
select () microseconds via struct timeval

Keep an ordered list of all your timeouts
Store absolute time for the timeout
Pointer to the context (e.g., local protocol state of the “connection”)
Event this timeout is about

Before calling select/poll
Determine current time (gettimeofday ())
Determine first timeout in list and calculate delta
(if timeout has already passed initiate handling right away)
Parameterize poll/select() with the delta

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

24

Timeouts (2)

Example:
Timeout 200ms

struct timeval tv, delta, now;

/* some event occurs -> calculate absolute time in tv */
gettimeofday (&tv, NULL);
tv.tv_usec += 200*1000;
if (tv.tv_usec >= 1000000) {

tv.tv_usec -= 1000000;
tv.tv_sec++;

}

/* ... many other activities -> back in mainloop */
gettimeofday (&now, NULL);
delta.tv_usec = tv.tv_usec – now.tv_usec;
delta.tv_sec = tv.tv_sec - now.tv_sec;
if (delta.tv_usec < 0) {

delta.tv_usec += 1000000;
delta.tv_sec--;

}
if (delta.tv_sec < 0) {

/* timeout has also passed -> handle now */
}
switch (n = select (..., ..., ..., ..., &delta) {

...
}



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

25

Packet pacing
To achieve a target bit rate, need to send packets in regular 
intervals
Calculate your target packet interval from the packet size…

Your own header + 8 bytes UDP + 20 bytes IPv4 + 1024 bytes payload
…and the target bit rate on the command line

Use a recurring timer for transmission
Important: calculate your transmission interval based upon a single initial 
absolute time value
� E.g. calculate your initial transmission time based upon getttimeofday ()
� Always add your constant interval to the previous timeout value without calling 

gettimeofday () again for this purpose
Do not do regular calculations
� This will lead to underutilization as it does not account for local processing time

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

26

Beware of threads
If your coding language allows you to avoid them

Will save you hassle (and overhead) in synchronizing access to internal 
data structures

Instead
Maintain your own state explicitly in some data structure
Remember what to do next
� E.g., send data at a certain time, wait for a response, etc.

“Register” all socket descriptors for your mainloop
“Register” all your timeouts
Process incoming events for all contexts one by one



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

27

UDP file transfer: uft

“Reliable” transfer of a file from one endpoint to another
Two client modes of operation

Initiate a transfer from a server: send a request and then wait for data
Initiate a transfer to a server: send data

Two server modes of operation
Wait for incoming requests for files from a client
Wait for incoming files from a client

Distinguished by means of command line options

File transmission shall take place in chunks of 1024 bytes
File identification to be conveyed (i.e., the file name)
File size to be included
File checking information (e.g., a checksum)
Other information conceivable

Support “simulated” packet loss

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

28

uft [-a|-s] [-p <port>] [-l <lossrate>]
uft <host> [-p <port>] [-l <lossrate>] –b <bitrate> [-t|-r] <file>

-a: server mode: accept incoming files from any host
-s: server mode: accept requests for files to send from any host
-t: client mode: send a file to the target host
-r: client mode: request transmission of a file from a host
<host> the host to send to or request from (hostname or IPv4 address)
-p: specify the port number to use (use a default if not given)
-b: transmission bitrate for the file (gross transmission rate)
<file> the name of the file to send or request

Further options may be useful; up to you.
Remember to do report errors (locally and across the network) as needed.
You may want to do something useful if the user aborts either process (Ctrl-C).



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

29

Hints (1)
Transport address(es) to receive data on

socket (SOCK_DGRAM, AF_INET, …)
Create and bind an individual UDP socket for every address
Remember host vs. network byte order

Generation of artificial packet loss
Write your own small lossy_sendto (...)

double p_loss = ...;

lossy_sendto (int sd, void *msg, size_t len, ...) {
if ((double) rand () / (double) MAXRANDNUMBER > p_loss)

return sendto (sd, msg, len, ...);
return len;

}

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

30

Hints (2)
Timer handling

gettimeofday(2) yield detailed system clock reading as (sec, usec) pair
If you work with timeout, calculate its absolute time 
In the mainloop, determine the time to wait based upon the current time
� This result is what you feed into poll() or select()
� Note that both use completely different time formats

If poll()/select() returns 0, a timeout has occurred

DO NOT USE SIGNALS FOR TIMING
Such as done by alarm()
This may just cause system call interruptions that you do not want or need
Better to stay in control all the time 



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

31

Hints (3)
Signals

You may need to catch at least SIGINT: signal (SIGINT, signalhandler);
� This may occur at any point in time, so you may want to postpone processing to the main 

loop (probably not needed in our simple example)
� In this case, you would just set a global variable and return (terminate = 1;)
� Need to check the variable regularly even if no packets arrive

Will cause interrupted system calls (errno == EINTR)
� Need to check for this also in your main loop and behave accordingly

File access
Regular i/o operation (open/close/read/write, fopen/fclose/fread/fwrite)
MS Windows: you may need O_BINARY to avoid eol conversion
Use fstat () to obtain file attributes (including file size)

© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

32

Hints (4) 
/* command line processing goes here */

if ((s = socket (AF_INET, SOCK_DGRAM, 0)) == -1) {
perror ("cannot create socket");
exit (-1);

}

listen_addr.sin_family = AF_INET;
listen_addr.sin_addr.s_addr = INADDR_ANY;
listen_addr.sin_port = htons (listen_port);
if (bind (s, (struct sockaddr *) &listen_addr,

sizeof (listen_addr)) == -1) {
perror ("cannot bind to address");
exit (-1);

}

... recvfrom (s, ...); ...

... sendto (s, ...); ...



© 2006 Jörg Ott & Carsten Bormann

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

33

Hints (5)
n_fd = 1;
fds [0].fd     = s;
fds [0].events = POLLIN;
fds [0].revents= 0;

for (;;) {

for (i = 0; i < n_fd; i++)
fds [i].events = POLLIN;

switch (poll (fds, n_fd, 600000)) {
case -1:

perror ("poll failed");
sleep (1);
break;

case 0:
fprintf (stderr, "Timeout...\n");
break;

default:
for (i = 0; i < n_fd; i++) {

if (fds [i].revents & POLLIN) {
if (i == 0) {

/* process events on socket fds [i].fd */
}

}}}


