# Introduction to Multiwavelength Optical Networks

Switching Technology S38.3165 http://www.netlab.hut.fi/opetus/s383165

Source: Stern-Bala (1999), Multiwavelength Optical Networks

P. Raatikainen

Switching Technology / 2007

L10 - 1

## **Contents**

- The Big Picture
- Network Resources
- Network Connections

## **Optical network**

- Why?
  - technology push, but no significant demand pull yet
  - evolving bandwidth hungry applications
  - optical transport already in the trunk network
- Why not yet?
  - optical last mile (a.k.a. the first mile) solutions still relatively primitive
  - still too expensive
  - administrative, political, etc. reasons
  - => "The information superhighway is still a dirt road; more accurately, it is a set of isolated multilane highways with cow paths for entrance."
- However, development getting pace

P. Raatikainen

Switching Technology / 2007

L10 - 3

## **Optical network (cont.)**

- An **optical network** is defined to be a telecommunications network
  - with transmission links that are optical fibers, and
  - with an architecture designed to exploit the unique features of fibers
- The term optical network (as used here)
  - does not necessarily imply a purely optical network,
  - but it does imply something more than a set of fibers terminated by electronic devices
- The "glue" that holds the purely optical network together consists of
  - optical network nodes (ONN) connecting the fibers within the network
  - network access stations (NAS) interfacing user terminals and other nonoptical end-systems to the optical network

# **Optical network (cont.)**

### **ONN (Optical Network Node)**

 provides switching and routing functions to control optical signal paths, configuring them to create required connections

### **NAS (Network Access Station)**

• provides termination point for optical paths within the optical network layer

### Basic types of optical networks

- transparent (purely optical) networks
  - Static network = broadcast-and-select network
  - Wavelength Routed Network (WRN)
  - Linear Lightwave Network (LLN) = waveband routed network
- hybrid optical network = layered optical network
  - Logically Routed Network (LRN)

P. Raatikainen

Switching Technology / 2007

L10 - 5

# Physical picture of the network



P. Raatikainen

Switching Technology / 2007

# A wish list of optical networks

### Connectivity

- support of a very large number of stations and end systems
- support of a very large number of concurrent connections including multiple connections per station
- efficient support of multi-cast connections

#### Performance

- high aggregate network throughput (hundreds of Tbps)
- high user bit rates (few Gbps)
- small end-to-end delay
- low error rate (digital) / high SNR (analog)
- low processing load in nodes and stations
- adaptability to changing and unbalanced loads
- efficient and rapid means of fault identification and recovery

P. Raatikainen

Switching Technology / 2007

L10 - 7

## A wish list of optical networks (cont.)

#### Structural features

- scalability
- modularity
- survivability (fault tolerance)

#### Technology/cost issues

- access stations: small number of optical transceivers per station and limited complexity of optical transceivers
- network: limited complexity of the optical network nodes, limited number and length of cables and fibers, and efficient use (and reuse) of optical spectrum

# **Optics vs. electronics**

#### **Optical domain**

- photonic technology is well suited to certain simple (linear) signal-routing and switching functions
- · static photonic devices offer
  - · optical power combining, splitting and filtering
  - · wavelength multiplexing, demultiplexing and routing
- channelization needed to make efficient use of the enormous bandwidth of the fiber
  - by wavelength division multiplexing (WDM)
  - · many signals operating on different wavelengths share each fiber
  - => optics is fast but dumb
  - => connectivity bottleneck

P. Raatikainen

Switching Technology / 2007

L10 - 9

# **Optics vs. electronics (cont.)**

#### **Electrical domain**

- electronics is needed to perform more complex (nonlinear) functions
  - signal detection, regeneration and buffering
  - logic functions (e.g. reading and writing packet headers)
- however, these complex functions limit the throughput
- electronics also gives a possibility to include in-band control information (e.g. in packet headers)
  - · enabling a high degree of virtual connectivity
- · easier to control
- => electronics is slow but smart
- => electronic bottleneck

## **Optics and electronics**

#### Hybrid approach:

- a multiwavelength purely optical network as a physical foundation
- one or more logical networks (LN) superimposed on the physical layer, each
  - designed to serve some subset of user requirements and
  - implemented as an electronic overlay
- an electronic switching equipment in the logical layer acts as a middleman
  - taking the high-bandwidth transparent channels provided by the physical layer and organizing them into an acceptable and cost-effective form

### Why hybrid approach?

- purely optical wavelength selective switches offer huge aggregate throughput of few connections
- electronic packet switches offer large number of relatively low bit rate virtual connections
- hybrid approach exploits the unique capabilities of optical and electronic switching while circumventing their limitations

P. Raatikainen Switching Technology / 2007 L10 - 11

## **Example LAN interconnection**

- Consider a future WAN serving as a backbone that interconnects a large number of high-speed LANs (say 10,000), accessing the WAN through LAN gateways (with aggregate traffic of tens of Tbps)
- Purely optical approach
  - each NAS connects its LAN to the other LANs through individual optical connections ⇒ 9 999 connections per NAS
  - this is far too much for current optical technology
- · Purely electronic approach
  - electronics easily supports required connectivity via virtual connections
  - however, the electronic processing bottleneck in the core network does not allow such traffic
- Hybrid approach: both objectives achieved, since
  - LN composed of ATM switches provides the necessary connectivity
  - optical backbone at the physical layer supports the required throughput

### **Contents**

- The Big Picture
- Network Resources
  - Network Links: Spectrum Partitioning
  - Layers and Sublayers
  - Optical Network Nodes
  - Network Access Stations
  - Electrical domain resources
- Network Connections

P. Raatikainen Switching Technology / 2007

## **Network links**

A large number of concurrent connections can be supported on each network link through successive levels of **multiplexing** 

- Space division multiplexing in the fiber layer:
  - a cable consists of several (sometimes more than 100) fibers, which are used as bi-directional pairs
- Wavelength division multiplexing (WDM) in the optical layer:
  - a fiber carries connections on many distinct wavelengths ( $\lambda$ -channels)
  - assigned wavelengths must be spaced sufficiently apart to keep neighboring signal spectra from overlapping (to avoid interference)
- Time division multiplexing (TDM) in the transmission channel sublayer:
  - a  $\lambda$ -channel is divided (in time) into frames and time-slots
  - each time-slot in a frame corresponds to a transmission channel, which is capable of carrying a logical connection
  - location of a time-slot in a frame identifies a transmission channel

### Fiber resources



P. Raatikainen

Switching Technology / 2007

L10 - 15

# **Optical spectrum**

• Since wavelength  $\lambda$  and frequency f are related by  $f\lambda = c$ , where c is the velocity of light in the medium, we have the relation

$$\Delta f \approx -\frac{c \Delta \lambda}{\lambda^2}$$

- Thus, 10 GHz  $\approx$  0.08 nm and 100 GHz  $\approx$  0.8 nm in the range of 1550 nm, where most modern lightwave networks operate
- The 10-GHz channel spacing is sufficient to accommodate  $\lambda$ -channels carrying aggregate digital bit rates on the order of **1 Gbps** 
  - modulation efficiency of 0.1 bps/Hz typical for optical systems
- The 10-GHz channel spacing is suitable for optical receivers, but much too
  dense to permit independent wavelength routing at the network nodes
   for this, 100-GHz channel spacing is needed.
- In a waveband routing network, several λ-channels (with 10-GHz channel spacing) comprise an independently routed waveband (with 100-GHz spacing between wavebands).

P. Raatikainen

Switching Technology / 2007

# Wavelength partitioning of the optical spectrum

 $\lambda$ -channel spacing for separability at receivers



 $\lambda$ -channel spacing for separability at network nodes



P. Raatikainen

Switching Technology / 2007

L10 - 17

# Wavelength and waveband partitioning of the optical spectrum



P. Raatikainen

Switching Technology / 2007

# Capacity of wavelength and waveband routed networks

- Connections in optical networks usually require wavelength continuity, i.e., signal generated at a given wavelength must remain on that wavelength from source to destination
- Due to the current state of technology, imperfections in signal resolution at network nodes result in signal attenuation, distortion and cross-talk, which accumulate along the path
  - => channel spacing cannot be as dense in the network nodes as in the end-receivers
  - => loss of transport capacity
- Capacity losses can be avoided by switching wavebands (composed of a number of wave lengths) instead of individual wavelengths
- => wavelength routed solutions have lower throughput than waveband routed solutions

P. Raatikainen

Switching Technology / 2007

L10 - 19

# **Network based on spectrum partitioning**



P. Raatikainen

Switching Technology / 2007

## **Contents**

- The Big Picture
- Network Resources
  - Network Links: Spectrum Partitioning
  - Layers and Sublayers
  - Optical Network Nodes
  - Network Access Stations
  - Electrical domain resources
- Network Connections

P. Raatikainen

P. Raatikainen

Switching Technology / 2007

L10 - 21

L10 - 22

#### Layered view of optical network (1) Network Link Link NAS NAS ο¦Ε OA ОТ OR ONN ONN RP OR οт **Fiber Section** Fiber Link Optical/Wavelength Path **Optical Connection** Transmission Channel **Logical Connection** - OR Optical Receiver Electronic - O - OA - ONN - OT Optical Transmitter Optical Optical Amplifier Optical Network Node - RP Reception Processor - TP Transmission Processor

Switching Technology / 2007

# Layered view of optical network (2)



P. Raatikainen

Switching Technology / 2007

L10 - 23

## Layers and sublayers

- Main consideration in breaking down optical layer into sublayers is to account for
  - multiplexing
  - multiple access (at several layers)
  - switching
- Using multiplexing
  - several logical connections may be combined on a  $\lambda\text{-channel}$  originating from a station
- Using multiple access
  - $\,-\,$   $\lambda\text{-channels}$  originating from several stations may carry multiple logical connections to the same station
- · Through switching
  - many distinct optical paths may be created on different fibers in the network, using (and reusing)  $\lambda$ -channels on the same wavelength

# **Typical connection**



## **Contents**

- The Big Picture
- Network Resources
  - Network Links: Spectrum Partitioning
  - Layers and Sublayers
  - Optical Network Nodes
  - Network Access Stations
  - Electrical domain resources
- Network Connections

# **Optical network nodes (1)**

- Optical Network Node (ONN) operates in the optical path sublayer connecting N input fibers to N outgoing fibers
- ONNs are in the optical domain
- Basic building blocks:
  - wavelength multiplexer (WMUX)
  - wavelength demultiplexer (WDMUX)
  - directional coupler (2x2 switch)
    - static
    - dynamic
  - wavelength converter (WC)



P. Raatikainen

Switching Technology / 2007

L10 - 27

# **Optical network nodes (2)**

- Static nodes
  - without wavelength selectivity
    - NxN broadcast star (= star coupler)
    - Nx1 combiner
    - 1xN divider
  - with wavelength selectivity
    - NxN wavelength router (= Latin router)
    - Nx1 wavelength multiplexer (WMUX)
    - 1xN wavelength demultiplexer (WDMUX)

# **Optical network nodes (3)**

- Dynamic nodes
  - without wavelength selectivity (optical cross-connect (OXC))
    - NxN permutation switch
    - RxN generalized switch
    - RxN linear divider-combiner (LDC)
  - with wavelength selectivity
    - NxN wavelength selective cross-connect (WSXC) with M wavelengths
    - NxN wavelength interchanging cross-connect (WIXC) with M wavelengths
    - RxN waveband selective LDC with M wavebands

P. Raatikainen

Switching Technology / 2007

L10 - 29

# Wavelength multiplexer and demultiplexer



P. Raatikainen

Switching Technology / 2007

# **Directional Coupler (1)**

- **Directional coupler** (= 2x2 switch) is an optical four-port
  - ports 1 and 2 designated as input ports
  - ports 1' and 2' designated as output ports
- · Optical power
  - enters a coupler through fibers attached to input ports
  - divided and combined linearly
  - leaves via fibers attached to output ports
- Power relations for input signal powers  $P_1$  and  $P_2$  and output powers  $P_{1'}$  and  $P_{2'}$  are given by

$$P_{1'} = a_{11}P_1 + a_{12}P_2$$
  
$$P_{2'} = a_{21}P_1 + a_{22}P_2$$



- Denote power transfer matrix by  $A = [a_{ij}]$  and power matrix by  $P = [P_i]$  => P' = AP
  - P. Raatikainen

Switching Technology / 2007

L10 - 31

# **Directional Coupler (2)**

ullet Ideally, the power transfer matrix A is of the form

$$A = \begin{bmatrix} 1 - \alpha & \alpha \\ \alpha & 1 - \alpha \end{bmatrix}, \quad 0 \le \alpha \le 1$$

- If parameter  $\alpha$  is fixed, the device is **static**, e.g. with  $\alpha$  = 1/2 and signals present at both inputs, the device acts as a 2x2 star coupler
- If α can be varied through some external control, the device is **dynamic** or controllable, e.g. add-drop switch
- If only input port 1 is used (i.e.,  $P_2 = 0$ ), the device acts as a 1x2 **divider**
- If only output port 1' is used (and port 2' is terminated), the device acts as a 2x1 combiner



# **Add-drop switch**





Add-drop state

Bar state

OR - Optical Receiver
OT - Optical Transmitter

P. Raatikainen

Switching Technology / 2007

L10 - 33

## **Broadcast star**

- Static NxN broadcast star with N wavelengths can carry
  - N simultaneous multi-cast optical connections (= full multipoint optical connectivity)
- Power is divided uniformly
- To avoid collisions each input signal must use different wavelength
- · Directional coupler realization
  - (N/2) log<sub>2</sub>N couplers needed





P. Raatikainen

Switching Technology / 2007

# **Wavelength router**

- Static NxN wavelength router with N wavelengths can carry
  - wavelengths from the different inputs so that identical wavelengths do not enter the same outputs (Latin square principle)
  - N<sup>2</sup> simultaneous unicast optical connections (= full point-to-point optical connectivity)
- Requires
  - N 1xN WDMUX's
  - N Nx1 WMUX's



P. Raatikainen

Switching Technology / 2007

L10 - 35

## **Crossbar switch**

- Dynamic RxN crossbar switch consists of
  - R input lines
  - N output lines
  - RN crosspoints
- Crosspoints implemented by controllable optical couplers
  - RN couplers needed
- · A crossbar can be used as
  - a NxN permutation switch (then R = N) or
  - a RXN generalized switch



crossbar used as a permutation switch

## **Permutation switch**

- Dynamic NxN permutation switch (e.g. crossbar switch)
  - unicast optical connections between input and output ports
  - N! connection states (if nonblocking)
  - each connection state can carry N simultaneous unicast optical connections
  - representation of a connection state
     by a NxN connection matrix
     (exactly one connection "1" per each
     row and column)



output ports



P. Raatikainen

Switching Technology / 2007

L10 - 37

## **Generalized switch**

- Dynamic RxN generalized switch (e.g. crossbar switch)
  - any input/output pattern possible (incl. one-to-many and many-to one connections)
  - 2<sup>NR</sup> connection states
  - each connection state can carry (at most)
     R simultaneous multicast optical connections
  - a connection state represented by a RxN connection matrix
- Input/output power relation P' = AP with NxR power transfer matrix  $A = [a_{ij}]$ , where

$$a_{ij} = \begin{cases} \frac{1}{NR}, & \text{if switch } (i,j) \text{ is on} \\ 0, & \text{otherwise} \end{cases}$$



output ports



# **Linear Divider-Combiner (LDC)**

- Linear Divider-Combiner (LDC) is a generalized switch that
  - controls power-dividing and power-combining ratios
  - less inherent loss than in crossbar
- Power-dividing and power-combining ratios
  - $\delta_{ii}$  = fraction of power from input port j directed to output port i
  - $\sigma_{ij}$  = fraction of power from input port j combined onto output port i

3

• In an ideal case of lossless couplers, we have constraints

$$\sum_{i} \delta_{ij} = 1$$
 and  $\sum_{i} \sigma_{ij} = 1$ 

• The resulting power transfer matrix  $A = [a_{ij}]$  is such that

$$a_{ij} = \delta_{ij}\sigma_{ij}$$

P. Raatikainen Switching Technology / 2007

L10 - 39

1'

2'

3'

# LDC and generalized switch realizations



P. Raatikainen

Switching Technology / 2007

# Wavelength selective cross-connect (WSXC)

- Dynamic NxN wavelength selective cross-connect (WSXC) with M wavelengths
  - includes N 1xM WDMUXs,
     M NxN permutation switches,
     and N Mx1 WMUXs
  - (N!)<sup>M</sup> connection states if the permutation switches are nonblocking
  - each connection state can carry NM simultaneous unicast optical connections

P. Raatikainen

 representation of a connection state by M NxN connection matrices



Switching Technology / 2007 L10 - 41

# Wavelength interchanging cross-connect (WIXC)

- Dynamic NxN wavelength interchanging cross-connect (WIXC) with M wavelengths
  - includes N 1xM WDMUXs, 1 NM x NM permutation switch, NM WCs, and N Mx1 WMUXs
  - (NM)! connection states if the permutation switch is nonblocking
  - each connection state can carry NM simultaneous unicast connections
  - representation of a connection state by a NMxNM connection matrix



P. Raatikainen

Switching Technology / 2007

## **Waveband selective LDC**

- Dynamic RxN waveband selective LDC with M wavebands
  - includes R 1xM WDMUXs, M RxN LDCs, and N Mx1 WMUXs
  - 2<sup>RNM</sup> connection states (if used as a generalized switch)
  - each connection state can carry (at most) RM simultaneous multi-cast connections
  - representation of a connection state by a M RxN connection matrices



P. Raatikainen

Switching Technology / 2007

L10 - 43

### **Contents**

- The Big Picture
- Network Resources
  - Network Links: Spectrum Partitioning
  - Layers and Sublayers
  - Optical Network Nodes
  - Network Access Stations
  - Electrical domain resources
- Network Connections

# **Network access stations (1)**

- Network Access Station (NAS) operates in the logical connection, transmission channel and  $\lambda$ -channel sublayers
- NASs are the gateways between the electrical and optical domains

#### • Functions:

- interfaces the external LC ports to the optical transceivers
- implements the functions necessary to move signals between the electrical and optical domains



P. Raatikainen

Switching Technology / 2007

L10 - 45

# **Network access stations (2)**

- Transmitting side components:
  - Transmission Processor (TP) with a number of LC input ports and transmission channel output ports connected to optical transmitters (converts each logical signal to a transmission signal)
  - Optical Transmitters (OT) with a laser modulated by transmission signals and connected to a WMUX (generates optical signals)
  - WMUX multiplexes the optical signals to an outbound access fiber
- Receiving side components:
  - WDMUX demultiplexes optical signals from an inbound access fiber and passes them to optical receivers
  - Optical Receivers (OR) convert optical power to electrical transmission signals, which are corrupted versions of the original transmitted signals
  - Reception Processor (RP) converts the corrupted transmission signals to logical signals (e.g. regenerating digital signals)





# Wavelength add-drop multiplexer (WADM)



**WADM** combined with NAS

P. Raatikainen

Switching Technology / 2007

L10 - 49

## **Contents**

- The Big Picture
- Network Resources
  - Network Links: Spectrum Partitioning
  - Layers and Sublayers
  - Optical Network Nodes
  - Network Access Stations
  - Electrical domain resources
- Network Connections

# **End System**

- End systems are in the electrical domain
- In transparent optical networks, they are directly connected to NASs
  - purpose is to create full logical connectivity between end stations
- In hybrid networks, they are connected to LSNs
  - purpose is to create full virtual connectivity between end stations



P. Raatikainen

Switching Technology / 2007

L10 - 51

# **Logical Switching Node (LSN)**

- Logical switching nodes (LSN) are needed in hybrid networks, i.e. in logically routed networks (LRN)
- LSNs operate in the electrical domain
- · Examples of LSNs are
  - SONET digital cross-connect systems (DCS)
  - ATM switches
  - IP routers



P. Raatikainen

Switching Technology / 2007

# Logically routed network



## **Contents**

- The Big Picture
- Network Resources
- Network Connections
  - Connectivity
  - Connections in various layers
  - Example: realizing full connectivity between five end systems

# **Connectivity**

- Transmitting side:
  - one-to-one
    - (single) unicast
  - one-to-many
    - multiple unicasts
    - (single) multicast
    - multiple multicasts
- · Network side:
  - point-to-point
  - multipoint

- Receiving side:
  - one-to-one
    - (single) unicast
    - (single) multicast
  - many-to-one
    - multiple unicasts
    - multiple multicasts

P. Raatikainen

Switching Technology / 2007

L10 - 55

# **Connection Graph (CG)**

• Representing **point-to-point** connectivity between end systems



Connection graph



Bipartite representation

# **Connection Hypergraph (CH)**

• Representing multipoint connectivity between end systems



Connection hypergraph



**Tripartite representation** 

P. Raatikainen

Switching Technology / 2007

L10 - 57

## **Contents**

- The Big Picture
- Network Resources
- Network Connections
  - Connectivity
  - Connections in various layers
  - Example: realizing full connectivity between five end systems

P. Raatikainen

Switching Technology / 2007

## **Connections in various layers**

#### Logical connection sublayer

 Logical connection (LC) is a unidirectional connection between external ports on a pair of source and destination network access stations (NAS)

### Optical connection sublayer

 Optical connection (OC) defines a relation between one transmitter and one or more receivers, all operating in the same wavelength

### Optical path sublayer

 Optical path (OP) routes the aggregate power on one waveband on a fiber, which could originate from several transmitters within the waveband

P. Raatikainen

Switching Technology / 2007

L10 - 59

# Notation for connections in various layers

#### Logical connection sublayer

- -[a,b] = point-to-point logical connection from an external port on station a to one on station b
- $-[a, \{b, c, ...\}]$  = multi-cast logical connection from a to set  $\{b, c, ...\}$ 
  - station a sends the same information to all receiving stations

#### Optical connection sublayer

- -(a, b) = point-to-point optical connection from station a to station b
- $-(a,b)_k$  = point-to-point optical connection from a to b using wavelength  $\lambda_k$
- $-(a,\{b,c,...\})$  = multi-cast optical connection from a to set  $\{b,c,...\}$

#### Optical path sublayer

- $-\langle a,b\rangle$  = point-to-point optical path from station a to station b
- $-\langle a,b\rangle_k$  = point-to-point optical path from a to b using waveband  $w_k$
- $-\langle a, \{b, c, \ldots\} \rangle$  = multi-cast optical path from a to set  $\{b, c, \ldots\}$

# Example of a logical connection between two NASs



## **Contents**

- The Big Picture
- Network Resources
- Network Connections
  - Connectivity
  - Connections in various layers
  - Example: realizing full connectivity between five end systems

# Example: realization of full connectivity between 5 end systems



P. Raatikainen S

Switching Technology / 2007

L10 - 63

## **Solutions**

- Static network based on star physical topology
  - full connectivity in the logical layer (20 logical connections)
  - 4 optical transceivers per NAS, 5 NASs, 1 ONN (broadcast star)
  - 20 wavelengths for max throughput by WDM/WDMA
- Wavelength routed network (WRN) based on bi-directional ring physical topology
  - full connectivity in the logical layer (20 logical connections)
  - 4 optical transceivers per NAS, 5 NASs, 5 ONNs (WSXCs)
  - 4 wavelengths (assuming elementary NASs)
- Logically routed network (LRN) based on star physical topology and unidirectional ring logical topology
  - full connectivity in the virtual layer but only partial connectivity in the logical layer (5 logical connections)
  - 1 optical transceiver per NAS, 5 NASs, 1 ONN (WSXC), 5 LSNs
  - 1 wavelength

# **Solution markings**

End station

Logical switching node, e.g. ATM switch

☐ Network access station

Wavelength switching equipment, e.g. star coupler or wavelength selective cross-connect

P. Raatikainen Switching Technology / 2007 L10 - 65

# Static network realization



P. Raatikainen Switching Technology / 2007

# Wavelength routed network realization



Switching Technology / 2007

# Logically routed network realization



P. Raatikainen

P. Raatikainen

Switching Technology / 2007

L10 - 68