8. QoE and QoS Monitoring and data analyses

Dr. David Soldani

(david.soldani@nokia.com, tel. +358.50.3633527)

S-38.3215 Special Course on Networking Technology for Ph.D. students at TKK

Outline

- QoE and QoS assurance concept
- QoE and QoS monitoring frameworks
- QoS Service Level Agreement
 QoS SLA for IP transport and UMTS layers
- Confidence intervals on unknown parameters
- Statistical confidence on collected data
- QoE and QoS monitoring tools

Conceptual architecture (1/2)

HELSINK

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory NOKIA

Connecting People

Conceptual architecture (2/2)

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

4

Connecting People

Approaches to measuring QoE

QoE measurements using statistical samples

- Key service weights and performance indicators
- Statistical sample definition and MQA utilization
- Overall QoE score (index) for each service and service mix
- NMS using QoS parameters
 Collection of QoS performance
 Mapping of QoS onto QoE

QoE Metrics: reliability and quality

Accessibility & retainability

QoE KPI	Most Important Measurements
Service availability	Ratio of territory under coverage to not under coverage (%)
(Anywhere)	
Service accessibility	Ratio of refused connections or Ratio of PDP Context failed to
(Anytime)	establish in first attempt (%)
Service access time	Average call or session set up time (s)
(Service setup time)	
Continuity of service connection	Service interruption ratio (%)
(Service retainability)	

Integrity

QoE KPI	Most important measurements
Quality of session	Service application layer packet loss ratio (%)
Bit rate	Average bearer bit rate achieved as ratio of bit rate demanded by application (%)
Bit rate variation	Bearer stability: Bit rate variation around negotiated bit rate (%)
Active session throughput	Average throughput towards mobile (kb/s)
System responsiveness	Average response time (s)
End to end delay	Average end to end delay (ms or s)
Delay variation	Jitter (%)

See also 3GPP SA4 work on "End-to-End Multimedia Services Performance Metrics"

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory 6

S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

ESTSI QoS parameters from end-user viewpoint

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

7

S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

Connecting People

ITU Model for user-centric QoS categories

Error	Conversational	Voice/video	Streaming audio	Fax
tolerant	voice and video	messaging	and video	
Error intolerant	Command/control (e.g. Telnet, interactive games)	Transactions (e.g. E-commerce, WWW browsing, Email access)	Messaging, Downloads (e.g. FTP, still image)	Background (e.g. Usenet)
	Interactive	Responsive	Timely	Non-critical
	(delay << 1 s)	(delay ~ 2 s)	(delay ~10 s)	(delay >>10 s)

NOKIA Connecting People

S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

8

ITU-T performance targets for audio and video

Medium	Service Application	Degree of symmetry	Typical data rates	Key performance parameters and target values			
				One-way delay	Delay variation	Information loss**	Other
Audio	Conversational voice e.g.telephony	Two-way	4-64 kb/s	< 150 ms preferred* < 400 ms limit*	< 1 ms	< 3% packet loss ratio (PLR)	-
Audio	Voice messaging	Primarily one-way	4-32 kb/s	< 1 s for playback < 2 s for record	< 1 ms	< 3% PLR	-
Audio	High quality streaming audio	Primarily one-way	16-128 kb/s ***	< 10 s	<< 1 ms	<1% PLR	-
Video	Videophone	Two-way	16-384 kb/s	< 150 ms preferred**** < 400 ms limit		<1% PLR	Lip-synch: < 80 ms
Video	Broadcast	One-way	16-384 kb/s	< 10 s		<1% PLR	

* Assumes adequate echo control

** Exact values depend on specific codec, but assumes use of a packet loss concealment algorithm to minimise effect of packet loss *** Quality is very dependent on codec type and bit-rate

**** These values are to be considered as long-term target values which may not be met by current technology

ITU-T performance targets for <u>data</u>

Medium	Service Application	Degree of symmetry	Typical amount	Key performance parameters and target values			
			or uata	One-way Delay	Delay variation	Information loss	
Data	Web-browsing - HTML	Primarily one-way	~10 kB	Preferred < 2 s/page Acceptable < 4 s/page	N.A	Zero	
Data	Bulk data transfer/retrieval	Primarily one-way	10 kB -10 MB	Preferred < 15 s Acceptable < 60 s	N.A	Zero	
Data	Transaction services – high priority e.g. e- commerce, ATM	Two-way	< 10 kB	Preferred < 2 s Acceptable < 4 s	N.A	Zero	
Data	Command/control	Two-way	~ 1 kB	< 250 ms	N.A	Zero	
Data	Still image	One-way	< 100 kB	Preferred < 15 s Acceptable < 60 s	N.A	Zero	
Data	Interactive games	Two-way	< 1 kB	< 200 ms	N.A	Zero	
Data	Telnet	Two-way (asymmetric)	< 1 kB	< 200 ms	N.A	Zero	
Data	E-mail (server access)	Primarily One-way	< 10 kB	Preferred < 2 s Acceptable < 4 s	N.A	Zero	
Data	E-mail (server to server transfer)	Primarily one-way	< 10 kB	Can be several minutes	N.A	Zero	
Data	Fax ("real-time")	Primarily one-way	~ 10 kB	< 30 s/page	N.A	<10 ⁻⁶ BER	
Data	Fax (store & forward)	Primarily one-way	~ 10kB	Can be several minutes	N.A	<10 ⁻⁶ BER	
Data	Low priority transactions	Primarily one-way	< 10 kB	< 30 s	N.A	Zero	
Data	Usenet	Primarily one-way	Can be 1 MB or more	Can be several minutes	N.A	Zero	

QoS Monitoring framework

HELSINKI UNIVERSITY OF TECHNOLOGY

Example: counters/gauges classification

Networking laboratory

S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006 12

Example: 'pipes' definition and mapping

Note: If one 'pipe' carries more service applications, only the performance of the aggregate traffic can be assessed

Example: differentiate integrity monitoring

EDGE/GPRS Counters

- UL/DL correctly delivered RLC blocks
- \Box UL/DL related duration of TBF (*i*)
- □ Measurement period (S)
- □ Total number of collected TBFs (**N**)

Classification

- □ RLC transmission mode (AM, UM)
- □ EGDE MCS 1-9 (**k**)
- □ GPRS CS 1-4 (**k**)
- □ Precedence Class *p* or ARP (1-3)
- □ Cell identifier (Cell ID or BVCI)

Differentiated throughput analysis

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

14 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

Example: differentiated reliability monitoring

Signaling connection management

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

15 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

QoS Service Level Agreement

Definition

- IP layer SLA QoS management
- UMTS layer SLA QoS management

Service Level Agreement

- A service level agreement (SLA) is a formal negotiated contract between two parties, e.g., an enterprise customer and a mobile operator
- The purpose of an SLA is to create a common understanding about services, priorities, responsibilities between the two parties
- Mobile operator will likely see the popularity of SLA increases as more enterprises sign up for mobile services, and as more multimedia services are being provisioned over mobile networks

SLA QoS management framework

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Contents of a generic SLA QoS contract

Network scope

Where the SLA QoS applies

Service schedule

The period during which the SLA applies

Customer traffic flow identifiers

Parameters to uniquely identify a customer traffic flow

Performance parameters and their target values

To be experienced by customer traffic flows

Directly tied to customer traffic flow identifiers

Customer traffic flow identifier #1: performance targets #1 Customer traffic flow identifier #2: performance targets #2

Contents of a generic SLA QoS contract

Traffic profiles

□ Traffic characteristics for each type of customer traffic flow

Non-conformance actions

□ Treatment for the traffic flows that exceed their profile, e.g, drop or delay

Action of SLA violation

Penalties on the operator if QoS SLA contract is violated, e.g., reduction of service fees paid by customer

SLA monitoring and reporting mechanisms

How an operator makes monitoring results available to customers

Monitoring Technologies

SLA QoS management solution must decide on the monitoring technologies

Active vs. passive measurements

- Active: injects test traffic into the network to measure network performance
- Passive: derive network performance by monitoring existing user traffic

External probe vs. embedded agent

External: using specialized monitoring device, e.g. Mobile QoS Agent

Connecting People

Embedded: monitoring component embedded inside network elements, e.g. Service assurance tool on routers

SLA for Different Layers

IP transport layer QoS and UMTS layer QoS SLAs (Note that there are two IP layers: user IP and transport IP.)

NOKI

Connecting People

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

SLA for IP Transport Layer

HELSINKI UNIVERSITY OF TECHNOLOGY

Use Case: SLA between mobile and IP operators

- The IP network that connects mobile sites are shared by multiple operators
- IP network operator signs SLA contracts with mobile operators

Customer traffic flow identifiers

Combination of the following fields in IP packets:

- Source IP Address
- Destination IP address
- Source port number
- Destination Port number
- Protocol
- DSCP
- Flow ID (IPv6)
- Other higher layer fields
- □ A field can be a wild card anything matches

Performance parameters

Performance parameter	Expedited Forwarding	Assured Forwarding	Best Effort
Delay (one way or round trip)	X		
Delay jitter	X		
Packet loss ratio	X	Х	
Throughput	X	Х	
Bearer availability	X	Х	Х

IP Transport layer SLA QoS monitoring

- Throughput may be monitored passively at interfaces
- Packet delay, jitter, loss and bearer availability may be monitored through active measurement

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory **Connecting People**

IP Transport layer SLA QoS management

Three possible active measurement solutions

- □ # 1, using Cisco router SAA tool for active monitoring
- # 2, implementing active monitoring functions on GSN
- □ # 3, installing dedicated active monitoring devices

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Back to the Use Case

- The IP network that connects mobile sites are shared by multiple operators
- IP network operator signs SLA contracts with mobile operators
- SLA QoS contents
 - □ throughput, delay, jitter and loss for each Diffserv class between mobile sites
 - □ IP backbone availability
- PLMN can measure and verify the SLA by itself

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Connecting People

SLA for UMTS Layer

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Use Case – SLA between Mobile Network Operator and Application Service Provider

Mobile network operator (MNO) signs SLA contract with an application service provider (ASP)

31

Customer traffic flow Identifiers

□ Combination of the following parameters

- IMSI
- MSISDN
- Traffic class, THP, ARP, MBR, GBR
- Access point name
- Source and destination IP addresses
- Protocol, port numbers
- Other higher layer fields
- □ A field can be a wild card anything matches

NOKIA Connecting People

Performance parameters

Performance parameter	Conversational	Streaming	Interactive	Background
Delay (one way or round-trip)	X	Х		
Delay jitter	X	Х		
Packet loss ratio	X	Х	Х	
Throughput	X	Х		
Packet error ratio	X	Х	Х	Х
Service response time	X	Х	Х	
Packet reordering	X	Х	Х	Х
PDP-context session blocking ratio	X	Х	Х	X
PDP-context session availability	Х	Х	Х	X
PDP-context session retain ability	X	Х	Х	Х
PDP-context session access time	Х	Х	Х	X

UMTS layer SLA QoS monitoring solution

- Monitor by sampling per PDP-context session performance for throughput, delay, packet loss, error ratio, service response time and traffic profile parameters by GGSN and mobile devices
 - □ Method one: Passively monitor application traffic
 - □ Method two: Active monitoring by installing responders at core sites

UMTS layer SLA <u>QoS management</u> solution

- Aggregate throughput and traffic profile at Gi are monitored by GGSN
- PDP-context Session Blocking Ratio, PDP-context Session Availability, PDP-context Session Retain ability, PDP-context Session Access Time are monitored by
 - \Box SGSN; or
 - mobile terminal

Back to the Use Case

- Mobile operator signs SLA contract with the ASP
- SLA QoS contains for each service and subscriber group
 - □ User IP packet throughput, delay, jitter, loss, error ratio and traffic profile
 - □ Total uplink and downlink IP packet throughput and traffic profiles at Gi interface
 - □ PDP-context session performance
- Mobile operator should measure the SLA parameters and make the measurement available to the ASP

Connecting People

Confidence interval on unknown parameter

Smooth away effects of extremes or 'outliers'

- □ Median instead of Mean (Average)
- Inter Quartile Range (IQR), i.e. 75th 25th quartile, instead of Variance or Standard Deviation

Calculation of C.I. on an unknown parameter

- Find the function that approximate best the **distribution** of simulated or measured data, e.g. using Chi-Square test
- A percentage confidence interval on a parameter, 100*(1-α), correlates with the reliability (or repeatability) of performance results, e.g.
 - Confidence interval on a *proportion* (using the binomial distribution)
 - Confidence interval on the *mean* of a normal distribution where the variance is unknown (using the t-distribution)

Statistical confidence on measured data

- Statistical confidence on a proportion p
 - Find the sample size *n* to be 100*(1-α) percent confident that the relative error Δ*p*/*p* is less than a specified value *E*
- Statistical confidence on a *measurement of time*
 - Find the sample size *n* to be 100*(1-α) percent confident that the deviation from the real mean value is less than a specified threshold *a* for a given expected mean and standard deviation value

Local average power of a mobile radio signal

Find the sampling period for the power measurements of the radio signal to be 90% confident that the deviation from the real local mean of the signal strength is less than 1dB

Examples

1) Relationship between the accuracy of the estimator of a proportion and the number of calls to be observed							
Confidence Interval p ∆p/p Measurement interval Mean arrival rate per UE	95 % 5 % 10 % 3600 s 600 s	Proportion (e.g. expected unsuccessful call ratio) Error (required accuracy for p) A B					
α σ(α)^2 (1-p)/p (Δp/p)^2	0.0500 3.8415 19.0000 0.0100	C D $(1-\alpha/2)^*100$ percentile of $N(0,1)$ E F					
n UE	7299 1217	G = D*E/FRequired number of call attemptsH = G/A*BNeeded Mobile Agents					
2) Method of calculating the num	ber of observation	s required for measurements of time					
Confidence Interval	<mark>95</mark> %						
s	0.2 s	Expected standard deviation of the call setup time (calculated from former measures)					
x	3.5 s	Expected mean value of the call setup time (calculated from former measures)					
а	2 %	Relative accuracy					
Measurement interval	3600 s	A					
Mean arrival rate per UE	600 s	В					
a	0.0500	С					
σ(α)^2	3.8415	D					
a^2	0.0004	E					
(s/x)^2	0.0033	F					
n	32	G = D/E*F Required number of observations					
UE	6	H = G/A*B Needed Mobile Agents					
3) Estimate of local average power	er of a mobile radio	o signal (90% confidence, 1 dB accuracy)					
,							
V	3 km/h	A UE speed					
f	2150 MHz	B Transmission frequency					
λ	0.14 m	C					
Minimal Sampling Period	134 ms	D = 1000*0.8*C*3.6/A (W. C. Y. Lee)					

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory NOKIA

Connecting People

Mapping of QoE onto QoS performance

Objective Indicators vs. Subjective Measurements

Oos KDIa	QoE subjective scale				
Q03 KF 15	Excellent	Very good	Average	Fair	Poor
End-to-end delay (median)	$\leq 2s$	$\leq 4s$	≤ 8s	≤ 15s	≥15s
Packet loss ratio	$\leq 0\%$	≤ 0.1%	≤1%	≤ 5%	≥ 5%
Mean Throughput	\geq 200kb/s	≥ 120 kb/s	$\geq 60 \text{kb/s}$	$\geq 20 \text{kb/s}$	≤ 20 kb/s

40 S-38.3215 Special Course on N

QoE monitoring tools

- Application layer tools
 E.g. Ping, FTP, HTTP browsing, MMS, SIP, WAP, etc...
- Field measurement tools
 - □ Radio measurements + application layer performance
- Protocol analyzers
 - □ Protocol stack performance analysis at any interface
- Mobile QoS agents
 - □ L1-L7 measurements, position and location
 - □ Active and passive measurements

Networking laborator

Mobile Quality Agent (MQA) functions

- Measuring mobile multimedia service quality, radio parameters, and producing and reporting performance statistics to central management servers
- Active probing and/or passive monitoring, which turns thousands of commercial mobile phones into (secure and non intrusive) service quality probing stations
- A central management server derives KPIs out of the reports from QoS agents, and manages QoS agents, i.e. dynamically dispatches, installs, and activates or deactivates them

What is a Mobile Quality Agent (MQA)?

Use cases: why an MQA?

- Network planning and optimization, monitoring multimedia services quality and radio interface performance where subscribers exactly are, reducing the needs of traditional drive or walk tests
- Benchmarking with the competition or collecting quality of foreign networks for a fact based comparison
- Taking care of particular customers segments, such as corporate or VIP users (e.g. business travelers) and keeping service level agreement promise
- Selling what the operator can deliver, understanding customers better (helpdesk) by collecting data of different categories, and launching only successful services
- Solution for emerging Mobile Virtual Network Operators to monitor service quality and check whether the mobile operators meet the service level agreements

Experimental validation by means of prototyping

- Active measurements and one Sub-agent for Web browsing + Radio counters
- Sampling period of 1-2 s; session period of 10 minutes; reporting period of 30 minutes
- Download of two Web pages at a fixed and changing the handset position
 - 92.26 kB (54.63 kB text, 37.63 kB for 15 images)
 - □ 500 kB (text only)

Bearer service counters

- Number of successful PDP context activations and activation times
- Service application setup time (request for a web page is sent http response header is received)
- □ Function time (http response header received page completely downloaded)
- □ Number of successful browsing attempts; total number of data received (in bytes)
- Total number of packets received
- Average throughput for the download during the session

Bearer types

- □ GPRS, EGPRS, and UMTS
- 3G radio measurements
 - □ RSCP and Ec/N0 of 4 best cells (A, M and D); Active set size; UE Tx power max and received SIR
- 2G radio measurements
 - Rx Level; DL and UL BLER; CS1-4/MCS1-9 coding scheme classes; and timing advance
 - GPS position and network location

GPRS attach & PDP context setup time

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Connecting People

Average throughput per session

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory **Connecting People**

WCDMA average throughput per session

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Interference analysis per cell

HELSINKI UNIVERSITY OF TECHNOLOGY

Example: Nokia Mobile Quality Analyzer

- **1** Self registration, MQA Agent and configuration download
- 2 Secure measurement reporting via https post
- **3** Download and update MQA configuration if available
- 4 Measurement collection in database
- **5** Measurement forward to Reporting System (e.g. Nokia NetActTM, 3rd party, ...)
- 6 Data Analyze and Report generation

OSS LAN

QoS monitoring tools: end-to-end

Networking laboratory

S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

Centralize performance monitoring solution

53 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

Networking laboratory

Active measurements: use cases

- Verify QoE, e2e via MT connected to Stethoscope
- Verify Mobile Network only (GPRS or 3G)
- Verify IP Backbone (between Core Sites)
 - Verify Service Platform (services offered via AP)

54 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

HELSINKI UNIVERSITY OF TECHNOLOGY

Networking laboratory

Service Quality Manager: e.g. data sources

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

References

- D. Soldani, M. Li and R. Cuny (eds.), QoS and QoE Management in UMTS Cellular Systems, John Wiley and Sons, June, 2006, 460 pp.
 - http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470016396.html
 - http://www.connecting.nokia.com/NOKIA/nns.nsf/a/78786C61AB5A7C5AC225 718F0026BAA3

(Contact Mr. Geoff Farrell @ Wiley gfarrell@wiley.co.uk)

See also:

http://lib.tkk.fi/Diss/2005/isbn9512278340/

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

