9. QoS and QoE Optimization

Dr. David Soldani

(david.soldani@nokia.com, tel. +358.50.3633527)

S-38.3215 Special Course on Networking Technology for Ph.D. students at TKK

Outline

- Service optimization and architecture
- QoS optimization
 - Radio access networks

2

- Core and backbone networks
- Service application performance improvement

QoS management conceptual breakdown

QoS provisioning

Process of configuring and maintaining selected network elements based upon customer service level agreements (SLAs) and observed quality performance

QoE and QoS monitoring

Process of collecting QoE and QoS performance statistics, faults and warnings; these data are then used for generating analysis reports for making changes/upgrades to the network

QoE and QoS optimization

Process responsible for accessing monitored information, processing the data to determine service and network quality metrics, and initiating corrective actions when any of the quality levels is considered unsatisfactory

QoS and QoE optimization concept

NOKIA Connecting People

Operator processes

Customer

Customer Interface Management Processes

Customer Care Processes

- Sales
- Order handling

Configuration

• Problem handling

- Customer QoS management
- Invoicing
- . . .

• . . .

Service Development and Operations Processes

- Planning and development Quality management

 - Rating and discounting
- Problem management

Network and Systems Management Processes •Planning and development •Maintenance •Data management

- Provisioning
- •Inventory management
- . . .

Network Element Management Processes

Optimization loop and external factors

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

6

Performance metrics

- NMS key performance indicators
- Detailed logging of protocols at different interfaces
- Detailed logging of element performance data
- Drive/walk tests
- Mobile and distributed QoS agents

Optimization process 'triggers'

- New technology or elements into use
- Changes due to external edge conditions
- Detection of performance deterioration
- Daily service and network operation process

8

Automation and autonomic (intelligence)

Automation

- Reduce human-made repetitive and routine tasks
- Autonomic
 - □ Model expert decision-making and reasoning (knowledge)

9

Network wide optimization workflow

- Fast service creation, introduction and provisioning, and improved quality of service at a lower cost
- Proper workflow support and automation of customer care and operational support processes

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

10 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

Connecting People

An approach to QoS optimization

- Users (services) satisfaction criteria: definition
- Fitness (objective) function: definition
- Input traffic mixes and traffic volume: selection
- Crucial QoS parameters: sensitivity analysis
- Solution space search algorithm (genetic): selection
- ⇒ Trends and optimal parameter settings
- ⇒ Design of feasible method to QoS optimization

User satisfaction: definition

Speech calls and video calls (GB)

The user does not get neither blocked nor dropped

SWIS (GB)

- The user does not get neither blocked nor dropped
- $\hfill\square$ No re-buffering occur during the session

PoC (NGB)

- The user does not get neither blocked nor dropped
- $\hfill\square$ No re-buffering occur during the session

Streaming (GB and NGB)

- The user does not get neither blocked nor dropped
- $\hfill\square$ No re-buffering occur during the session

- Dialup (http, emails, ftp) (NGB)
 - The user does not get neither blocked nor dropped
 - \Box Active session throughput >= 64 kb/s

WAP (NGB)

- The user does not get neither blocked nor dropped
- \Box Active session throughput >= 32 kb/s

MMS (NGB)

- The user does not get neither blocked nor dropped
- \Box Active session throughput >= 8 kb/s

Allowed parameter values

Population: 10 member vectors of 14 components

Parameter	THP	Range	Service
	T1	8, 16 kb/s	PoC
	T2	64, 128 kb/s	Streaming
Minimum allowed bit rate	T3	32, 64, 128, 144, 256, 384 kb/s	WAP/MMS
	T4	64, 128, 144, 256, 384 kb/s	Dialup
	T1	8, 16 kb/s	PoC
	T2 64, 128 kb/s		Streaming
Maximum allowed bit rate	T3	32, 64, 128, 144, 256, 384 kb/s	WAP/MMS
	T4	64, 128, 144, 256, 384 kb/s	Dialup
	T1	1, 2, 5, 10, 20, 30 s	PoC
Inactivity timer	T2	1, 2, 5, 10, 20, 30 s	Streaming
	T3	1, 2, 5, 10, 20, 30 s	WAP/MMS
	T4	1, 2, 5, 10, 20, 30 s	Dialup
Minimum allocation time	Not differentiated	1, 2, 5, 10, 15, 20 s	All services
Maximum queuing time	Not differentiated	1, 2, 5, 10, 15, 20 s	All services

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Fitness function (1/2)

 Cost function of the genetic algorithm: distance actual percentage of satisfied users of the worst performing service and the corresponding target value

Fitness function (2/2)

- The lower the fitness value the better the network configuration
- Fitness < 0 means that service performance is above the target
- Fitness = 0 means that service performance is on target

$$SatisfiedUsers(i) = \frac{SatisfiedUsers(i)}{max\{ServiceType(i),1\}} - TargetSatisfaction(i) \\ \frac{TargetSatisfaction(i) \cdot (1 - TargetSatisfaction(i))}{\sqrt{\frac{TargetSatisfaction(i)}{max}\{ServiceType(i),1\}}}}$$

$$Fitness = -\min_{\{i=1,\dots,N\}} \{Satisfaction(i)\}$$

HELSINKI UNIVERSITY OF TECHNOLOGY

Genetic approach to QoS optimization

Traffic mixes

Service	Proportion of calls (%)								
	Mix 1	Mix 2	Mix 3	Mix 4	Mix 5				
Speech	32	44	40	40	20				
Video	0	3	0	2	7				
SWIS	3 0		10	5	10				
PoC	14	9	10	25	18				
Streaming	2	10	10	4	12				
WAP	38	17	10	10	13				
MMS	8	5	10	7	5				
Dialup	3	12	10	7	15				

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Mix 3: % of SU vs. iteration

Mix 1-5: best fitness vs. iteration number

Networking laboratory

Optimal parameter settings

Mix	Mi	n Allo (kł	owed	BR	Max allowed BR (kb/s)			Inactivity timer			ner	Min alloc.	Max queuing	
	T 1	T2	T3	T4	T 1	T2	T3	T4	T 1	T2	т3	Т4	(s)	(s)
1	8	128	32	64	16	128	64	144	1	1	2	5	5	10
2	8	64	32	64	16	64	384	128	1	5	30	1	20	5
3	16	64	32	64	16	128	144	144	2	1	5	1	20	20
4	8	64	64	128	16	128	256	144	1	2	5	5	2	10
5	8	64	32	128	16	128	144	256	2	1	1	20	15	5
Ref 2	8	64	32	64	16	128	144	144	1	1	5	5	15	10
Ref 1	64	64	64 _N	64	64	128	144	144	5	5	5	5	15	10
						-								
Ref 1:Ref 2:Optimal settingsUndifferentiatedDifferentiated														

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Networking laboratory

Fuzzy optimization

- Definition of a delay control parameter (mapping function) for
 - □ Minimum allowed bit rate (*THPi*)
 - □ Maximum allowed bit rate (*THPi*)
 - □ Inactivity timer (*THPi*)
 - Minimum allocation time
 - Maximum queuing time

Connecting People

The higher the parameters values the shorter the expected packet transfer delay for a specific THP

Parameter (*DCP_THPi*) = (*max – min*)*(1 – *DCP_THPi*) + *min*

DCP_THPi = delay control parameter of *THPi max* = maximum value of the range *min* = minimum value of the parameter range

 Small values of *DCP* are expected to produce shorter packet transfer delays than large values

Discrete control rule

ST(*i*) = Service Type *i* (# users of service type *i*) TS(*i*) = Target Satisfaction (90%)

Rule "fuzzyfication": Good Sample

S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006 24

Networking laboratory

Rule "fuzzyfication": Poor, Excessive

HELSINKI UNIVERSITY OF TECHNOLOGY

DCP_THPi vs. Fuzzy truth values

Assumption: AND = Min(X, Y) OR = Max(X, Y)

- DownStep = -0.2 * MIN(GoodSample(N), Poor (S))
- UpStep = + 0.2 * MIN (GoodSample(N), Excessive(S))

⇒ DCP_THP(*i*) = DCP_THP(*i*) + UpStep + DownStep

Fuzzy control can respond to small deviations from the target with small control steps, allowing faster solutions to satisfaction problems

Connecting People

Ex: Optimization in core network

- Four queues and congestion at Gb interface
- PVC with Committed Information Rate (CIR): 48 kb/s (42 kb/s)
 M1 (4/2 TSL): FTP on THP1
 - □ M2 (3/1 TSL): FTP on THP3

WFQ: weights assigned to priority queues

Priority	Weights Set 1	Weights Set 2	Weights Set 3
	(%)	(%)	(%)
1	25	50	70
2	25	30	15
3	25	15	10
4	25	5	5

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Weight Set 1: User throughput

50/50

Weight Set 2: User throughput

77/23

Weight Set 3: User throughput

87/13

Time (s)

DSCP marking in SGSN and GGSN

	Action			
Traffic Class	Traffic Handling Priority (THP)	Allocation Retention Priority (ARP)	Per-Hop- Behavior (PHB)	DSCP (HEX)
Conversational	-	ARP1	EF	B8
Conversational	-	ARP2	EF	B8
Conversational	-	ARP3	EF	B8
Streaming	-	ARP1	AF41	88
Streaming	-	ARP2	AF42	90
Streaming	-	ARP3	AF43	98
Interactive	THP1	ARP1	AF31	68
Interactive	THP1	ARP2	AF32	70
Interactive	THP1	ARP3	AF33	78
Interactive	THP2	ARP1	AF21	48
Interactive	THP2	ARP2	AF22	50
Interactive	THP2	ARP3	AF23	58
Interactive	THP3	ARP1	AF11	28
Interactive	THP3	ARP2	AF12	18
Interactive	THP3	ARP3	AF13	38
Background	-	ARP1	BE	00
Background	-	ARP2	BE	00
Background	-	ARP3	BE	00

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Ex: Effects of policing and shaping at GGSN

HELSINKI UNIVERSITY OF TECHNOLOGY

Security functions during "GPRS attach"

NOKIA Connecting People

Security functions during "PDP context activation"

NOKIA Connecting People

Security functions during "RA update"

"PDP context activation" procedure

Ex: Geographical links

Ex: optimization process

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

Impact of parameter settings

Mapping of Applications to Particular Subsets of QoS Attributes

- MMS (NGB): TC = background, ARP = 3
- Web browsing (NGB): TC = Interactive, THP = 3, ARP = 3)

- PoC (GB): TC = Streaming, ARP = 1

NOK

Connecting People

HELSINKI UNIVERSITY OF TECHNOLOGY

Impact of traffic characteristics E Ε E Е Ε R R R R R . Application layer packets (WSP packets, HTTP packets, speech bursts) WAP, WEB, PoC RB RB RB RB RB /TBF /TBF /TBF /TBF /TBF Е R Application layer packets (FTP packets, RTSP, RTCP, RTP streaming packets) FTP, streaming **RB / TBF** $E = Establishment \\ \text{S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006}$ HELSINKI UNIVERSITY OF TECHNOLOGY 42

Networking laboratory

Impact of QoS functions: flow control (1/2)

Every RTCP report is carried by one UL TBF Streaming RTP/RTSP/RTCP **RTSP** exchange messages server protocol layer Streaming **RTP** data client **RTCP** reports **RTP** data **RTCP** reports EGPRS PACKET DL ACK/NACK **TBF** duration carrying RTCP report PACKET UL ASSIGNMENT Detail of UL TBF protocol RLC DATA BLOCK NOKIA Short delay period PACKET UL ACK/NACK with BSC FAI = 1 (too fast release) RLC] layer PACKET UL ACK/NACK with FAI = 1Long delay period (more delayed release, better performance)

HELSINKI UNIVERSITY OF TECHNOLOGY

Impact of QoS functions: flow control (2/2)

HELSINKI UNIVERSITY OF TECHNOLOGY

NOKI

Connecting People

Impact of performance enhancing proxies

PEP acts on Layer 4 and above of the OSI stack, between the HTTP and TCP protocol stack by e.g. compressing the contents, http pipelining, content manipulation and optionally protocol conversion

45 S-38.3215 Special Course on Networking Technology / David Soldani / Fall 2006

Networking laboratory

Ex: impact of PEP on Web browsing

HELSINKI UNIVERSITY OF TECHNOLOGY Networking laboratory

References

- D. Soldani, M. Li and R. Cuny (eds.), QoS and QoE Management in UMTS Cellular Systems, John Wiley and Sons, June, 2006, 460 pp.
 - http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470016396.html
 - http://www.connecting.nokia.com/NOKIA/nns.nsf/a/78786C61AB5A7C5AC225 718F0026BAA3

(Contact Mr. Geoff Farrell @ Wiley gfarrell@wiley.co.uk)

See also:

http://lib.tkk.fi/Diss/2005/isbn9512278340/

