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Basic idea of DFE

0 Inthe previous lectures, linear equalizers and their
adaptive implementations have been studied

0 Linear MM SE equalizer in stochastic gradient (=LMYS)
adaptive implementation is simple, efficient and robust

0 Problem: performance is not always good enough
— noise enhancement in channels with zeroes
— long impulse responses are a problem

0 Goal of thislecture:

Improve the linear equalizer by simple nonlinear
modifications
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Basic idea of DFE...

0 Linear equalizer processes input signal samplesr(k) only

0 Noise always limits the performance

0 Noise enhancement problem (particularly with ZF
equalizer)

0 Basic problem in linear filtering: desired signal and noise
processed together

0 New approach:
Utilize previous symbol decisions &, to cancel ISI!
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Basic idea of DFE...

0 Basic structure of a DFE equalizer

(symbol-rate discrete-time model):
DFE equalizer

Feedback part
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Basic idea of DFE...

Precursor 1S Postcursor 1S
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0 Channel impulse response:
— at any decision instant, there is ISI contribution from some
‘future’ symbols (precursor ISI) and past symbols
(postcursor ISI)

— in causal systems, postcursor ISI can be moved by
subtracting the weighted symbol valaedjsion feedback)
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I1. Design of DFE filters

Design of DFE filters...

0 Both hg(k) and fz(k) are linear filters

0 Complete filtering system is nonlinear, because nonlinear
operation (symbol decision) isin the feedback loop

0 For the design of DF Equalizer, both linear part (feed-
forward) filter and feedback filter need to be determined

0 For easier analysis and design, the system islinearized by
assuming all decisions correct (4, =a,)
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Design of DFE filters...

0 Equivalent block diagram for linearized system:

ad

he(K)
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Design of DFE filters...

A

0 Simplified version, with separated signal and noise paths:

n(k)
hr(K)
ad 4,9
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y(K)
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Design of DFE filters...

A S
0 Zero-forcing DFE:
h (K) Ce(k) Chg (K) = f (k) =&,
= H{(29C(29HR (2 -F (9 =1
0 Several possible solutions for linear hg(K) and feedback
filters fz(K) in the general case (infinite-length filters)
0 Noise gain depends on choice of linear filter hy(k)
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Design of DFE filters... @
0 MMSE-DFE: minimize total mean square error E[ez(k)J
e(k) =y(k) —a,
= [ (9 T T (9~ ()~ T+ (O TR
0 Assume independent signal and noise:
He? (0] = [ (0 o T (0 - 120 -3 ] )
+E{In 00 o]
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Design of DFE filters...

0 Express MSE in frequency domain:
He (] = [IH, (NOHG (1) ~Fu(1) -4 (N
+[IHe(F)" S, (F)ef

0o MSE = MIN when:
ﬂHR(f)fS](f)df:Mll\

with H,(F)C(F)H. () -Fy(f) =1
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Design of DFE filters...

Procedure for MM SE-DFE filter design:
1) Design linear filter Hi(f) so that noise is minimized
2) Design feedback Fg(f) filter so that ISl = zero

0 Intheideal case (infinite-length feedback filter), all IS|
can be completely eliminated!

0 In practice, only postcursor 1S from afinite number of
previous decisions can be eliminated

0 Precursor ISl can be reduce by linear (precursor) filter and
adding delay in the system
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[11. Adaptive DFE filters

Adaptive DFE filters @

0 Practical DFE filters (hy(K) and f(K)) are FIR filters
0 Both linear and feedback filters are adjusted adaptively

0 The adaptation can be done jointly for both hg(k) and f4(k)
asif for asingle FIR filter
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Adaptive DFE filters...

A S
0 Signal flow diagram of adaptive DFE filter with (N+M) taps:
r(k+N-2) r(k)
r(k+N-1 T l Tl T 1 L T T—) T \l
e ey Fo @ ®
b3
(K
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Adaptive DFE filters...

0 Adaptive DFE agorithm:
Define augmented signal and coefficient vectors

he=[h(N+D) - h(©O —f @ - — (M)
rR=rkeN-D - 1K) 8y - B’
0 DFE output signal:  Y(k) =hg' (K)r (k)

0 Error signal: (k) =a,~y(k) =a,~hg (K)r* (k)
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Adaptive DFE filters...

0 Stochastic gradient algorithm for DFE:

ek =hi0-2 0, €k
= hi () + Ak (K)

0 Formally and computationally ssimple like linear SG
algorithm!

0 Convergence properties similar to linear SG algorithm
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Error propagation &

0 Linearized DFE model assumes all decisions correct
0 What happensif they are not?

DFE equalizer
Feedback part
fr(k)
n(Kk)
Linear part
a0 § 4,0,
— K c(K) (+) he(K) o+
rk) y(K)
S e e
Error propagation... @

0 One decision error in DFE causes aburst of new errors

0 Theerrorsonly stop after M ( = order of feedback filter)
consecutive correct decisions

0 It can be shown (see Lee-Messerschmitt Appendix 10-A)
that this happens after K symbolsin the average, where

K= 2(2'\’I -1
0 This gives average error probability
R=2"R,

where P, is the error probability with no error propagation
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Error propagation...

0 Error propagation is the major problem in DFE

0 It can be kept in control by keeping the error probability
low (with other system choices) and keeping the feedback
filter short enough

0 Note! The error probability after DFE cannot be improved
by error-correcting coding! (Why?)

0 Alternative for DFE: Tomlinson-Harashima precoding
— move feedback part in the transmitter
— more in the DSL guest lecture!
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Summary

Today we discussed:

Nonlinear receivers 1. DFE equalizers

|. Basic idea of decision-feedback equalization
[1. Design of DFE filters

[11. Adaptive DFE

IV. Error propagation

Next week: Viterbi algorithm
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