
RSVP/ns: An Implementation of RSVP

for the Network Simulator ns-2

Marc Greis
greis@cs.uni-bonn.de

Computer Science Department IV

University of Bonn

Abstract

The purpose of the Integrated Services Architecture as de�ned by the IETF is to provide Quality

of Service (QoS) to applications which demand more from the network than IP's best-e�ort service,

such as multimedia applications. The Resource ReSerVation Protocol RSVP [RFC2205], a part of

the Integrated Services framework allows applications to perform receiver-initiated reservations for

unicast or multicast
ows, thus requesting resources (e.g. bandwidth or a bounded delay) from the

network nodes on the path to the sender. However, to this date RSVP has not yet been deployed

in larger portions of the Internet, so that large-scale research concerning RSVP has to rely on

simulation results. \RSVP/ns" is an implementation of RSVP for the network simulator ns-2 [NS]

which is a part of the VINT project [VINT]. This article serves both as internal and external

documentation for RSVP/ns version 0.5.

1 Introduction

This article is meant for users of ns-2 who want to use this implementation of RSVP in ns-2 (from

now on referred to as \RSVP/ns") in their own simulations and for those who want to understand

and extend the underlying code. Section 2 describes the basic features of RSVP/ns and also the

di�erences between RSVP/ns and the Functional Speci�cation [RFC2205] and the Message Processing

Rules [RFC2209]. Section 3 explains the implementation itself, assuming that the reader is familiar

both with RSVP and the basic internal structure of ns-2. Section 4 describes how to add RSVP/ns

to ns-2 and how to use RSVP/ns in simulation scenarios. Readers who only want to create their

own simulation scenarios with RSVP/ns can skip sections 2 and 3. Section 5 gives a few examples to

validate the correctness of RSVP/ns.

2 Features of RSVP/ns

This section describes which parts of the relevant RFCs have been implemented in RSVP/ns and

where RSVP/ns di�ers from these RFCs. There are various reasons why an implementation of RSVP

in a simulation scenario would be di�erent from \real" implementations:

� The simulation environment imposes certain limitations on the implementation.

� Certain things can be easier to implement in the simulation environment.

� The original purpose of the implementation limits the necessary level of detail.

� The available memory and CPU power limits the possible level of detail.

The last point was the reason for most of the current di�erences between RSVP/ns and the relevant

RFCs. However, it has been one of the main objectives during the implementation of RSVP/ns to

make it a subset of RSVP that can easily be extended to RSVP's full functionality in the future.

1

2.1 Features and non-features

RSVP/ns currently includes the following features:

� Controlled Load bandwidth guarantees based on WFQ (or WF2Q) scheduling in the links.

� Soft state with freely adjustable refresh intervals

� FF reservation style

� Gathering of statistics in the links and nodes

� Interfaces to parameter based and measurement based admission control

� A simple API with con�gurable upcalls for events

� The possibility of reserving a portion of a link's bandwidth for RSVP messages to avoid the loss

of RSVP messages.

The following features have not been implemented in RSVP/ns yet:

� WF and SE reservation styles

� Blockade state

� ADSPEC objects

� INTEGRITY objects

� Policy control mechanisms

2.2 RSVP objects

Table 1 shows which RSVP objects have been implemented in RSVP/ns. All of these objects have

been implemented to re
ect both the object lengths for IPv4 and IPv6. Even though there is no

explicit implementation of IPv6 in ns-2 it has to be assumed that users may want to simulate IPv6

networks in the future, in which case IPv6 message lengths should be simulated correctly.

Object Class-Num

SESSION 1

RSVP HOP 3

TIME VALUES 5

ERROR SPEC 6

STYLE 8

FLOWSPEC 9

FILTER SPEC 10

SENDER TEMPLATE 11

SENDER TSPEC 12

RESV CONFIRM 15

Table 1: RSVP objects in RSVP/ns

Object Class-Num

INTEGRITY 4

SCOPE 8

ADSPEC 13

POLICY DATA 14

Table 2: RSVP objects not implemented in RSVP/ns

2

There are various small di�erences between the objects in RSVP/ns and RSVP. One of the most

important di�erences is the omission of the DstPort (destination port) and protocol id �eld in the

SESSION object. In RSVP/ns, sessions are de�ned only by their their
ow id. The destination

address was included in the SESSION object, but only to simplify the RSVP message processing. The

reason for that is the way the mechanism for classifying packets into service classes was implemented.

This mechanism is based on a packet's
ow id and the sender address. However, this is not really a

di�erence between RSVP and RSVP/ns (even though there is no
ow id in IPv4), since a function

can be de�ned which maps the source port, the destination port and the protocol id onto a
ow id

and vice versa1. To be exact, this is a possibly useful extension of RSVP, as it is possible in RSVP/ns

to send two
ows to di�erent agents on di�erent nodes with the same
ow id. In most cases this will

not be desirable though, and then it will be the user's responsibility to assure that all
ow id's used

in a simulation scenario are unique at any given time.

The use of the
ow id for distinguishing between
ows also makes the SrcPort (source port)

�eld in the FILTER SPEC and SENDER TEMPLATE objects obsolete, and the C-Type 2 in the

FILTER SPEC and SENDER TEMPLATE objects was be omitted, since one of the C-Types 2 and

3 has become redundant due to the omission of the SrcPort �eld.

The LIH (logical interface handle) �eld in the RSVP HOP object could be omitted since there are

no logical interfaces in ns-2. The FLOWSPEC object only contains the token bucket rate and the token

bucket size to simplify the tra�c control mechanisms. The minimum policed unit and the maximum

packet size have been omitted, because it has been decided that these parameters are unnecessary

details in the current implementation. It should be possible for the user to implement mechanisms

which assign di�erent
ow id's to packets of certain sizes to exclude them from the reservation for a

ow.

Table 2 shows which objects have not been implemented in RSVP/ns yet. INTEGRITY objects

are not necessary in the simulation since there are no corrupted or spoofed messages in a simulation.

SCOPE objects are not needed, since wildcard �lter reservation styles have not yet been implemented

in RSVP/ns. The ADSPEC object was left out of the implementation for simplicity's sake and

POLICY DATA objects were omitted since policy control was out of the scope of the thesis RSVP/ns

was implemented for. All of these objects may be implemented in later versions of RSVP/ns.

2.3 RSVP messages

All RSVP message types except the PathErr message have been implemented in RSVP/ns. PathErr

messages are not needed since they only report errors based on port number mismatches which can

not occur in RSVP/ns. The message formats in RSVP/ns are the same as de�ned in section 3.1 of

RFC 2205 except that the RSVP objects which have not been implemented in RSVP/ns (see 2.1)

were omitted from the messages. It should be noted that in RSVP/ns, messages are not parsed

for correctness. This is only needed in environments where various RSVP implementations have to

interoperate, but in ns, the messages are always processed by the same RSVP process which generated

these messages.

2.4 Error codes

Only a subset of the possible RSVP error codes is necessary for RSVP/ns since many of the RSVP

error codes indicate corrupted messages, port con
icts or policy control failures, all of which can not

occur in RSVP/ns Table 3 shows a list of these error codes.

1It should be noted that the sender address can not be obsoleted by the
ow id, because there can be several senders

for the same session and it is possible to perform distinct reservation for each of these senders in RSVP.

3

Error Error code

Con�rmation 0

Admission Control failure 1

No path information for this Resv message 3

No sender information for this Resv message 4

Unknown reservation style 6

Table 3: Error codes in RSVP/ns

The error codes 3, 4 and 6 can occur directly as the result of an API call (i.e. when the user tries

to reserve resources for a
ow without path state, or with a non-supported reservation style). In fact,

error code 6 can only originate directly from an API call, because no non-supported reservation styles

will ever be sent in a reservation message.

2.5 Integrated Services

Currently, only controlled-load service is supported by RSVP/ns. The bandwidth guarantees are

enforced by WFQ [Dem89] (or WF2Q [Ben96]) in the links. One tra�c class is assigned to each

incoming
ow. Furthermore, the FLOWSPEC objects only contain the
ow's rate and token bucket

size, but not the peak rate in conformance with RFC 2211.

It should be noted that the
owspec for reservations is not computed as described in RFC 2205

as the minimum of the TSPECs from the path messages and the FLOWSPECs from the reservation

messages. The TSPECs are only \suggestions". It might be interesting for certain simulation scenarios

to perform over-reservations which are greater than the TSPECs.

3 Internals of RSVP/ns

This section describes the basic internal structure of the RSVP/ns implementation. One important

design goal for RSVP/ns was to keep it as independent from the rest of ns as possible and to not

change any �les belonging to ns unless it is absolutely necessary, to achieve compatibility with later

versions of ns.

3.1 RSVP objects and messages

The classes RSVPobject and RSVPmessage in RSVP/ns are similar in the way that they both have

a \contents" �eld which is a bu�er which is later copied into the \data " bu�er of the RSVP packets.

The contents bu�er of an RSVPmessage is put together from the contents bu�ers of the RSVPobjects

it contains. At the same time the (simulated) message size is calculated as the sum of the object sizes,

and later the appropriate IP header size (for IPv4 or IPv6) is added to this size. The RSVPobject

and RSVPmessage classes both maintain \length" and \conlength" �elds which store the simulated

size of the object and the real size of the contents bu�er respectively. Note that the \length" values

can vary between objects which were created for IPv4 or IPv6 simulations, while the \conlength" is

always the same.

3.2 RSVP agents

The RSVP agents maintain path and reservation state on all RSVP nodes, generate RSVP messages

and process incoming RSVP messages. They also provide the API for RSVP which is necessary on

4

the end nodes. Section 3.2.1 describes the stuctures used in RSVP agents such as path state blocks

and reservation state blocks. Section 3.2.2 describes the session list in which all sessions with their

corresponding path state blocks and reservation state blocks are stored and the timer list which is

used for scheduling the sessions for sending refresh messages and the section also describes how the

scheduling in the RSVP agents is performed.

3.2.1 Basic structures

There is one \session" structure for each session in an RSVP agent. It contains various �elds, including

pointers to its PSB list and RSB list with all relevant path states and reservation states for this session.

It also contains a \ref
ag", which is set if the session is currently scheduled for a refresh, and a \local"

ag which is set if the session was created by a local API call. It also contains a \con�rm"
ag which

is only relevant for sessions on end nodes, since it determines if a RESV CONFIRM object will be sent

with the next reservation message to request a con�rmation for this reservation from the network.

For each path state in each session, a \psb" structure is added to the session's PSB list. It contains

various objects as described in RFC 2209 and also a pointer to the RSVPChecker object (see section

3.3) which handed the RSVP message to the agent that caused the creation of this state block, as

well as a \timeout" �eld which stores the time at which the path state is going to expire unless it is

refreshed by path messages. The \rsb" structure is mostly identical to the RSB structure as described

in RFC 2209, except that it also contains a \timeout" �eld. In the TCSBs for a session, the current

reservations for each outgoing link are stored.

3.2.2 Session list and timer list

s_list Session Session Session Session

t_list

RSB

RSB

PSB

PSB

TCSB

TCSB

RSB

RSB

PSB

PSB

TCSB

TCSB

RSB

RSB

PSB

PSB TCSB

TCSB

t_next t_next

next next next

t_next

Figure 1: The session and timer lists

Figure 1 shows the structure of the two lists which are being maintained for the sessions. All sessions

are in the session list (\s list") and all sessions with state blocks (i.e. sessions which have to be

refreshed) are also in the timer list (\t list") which is sorted in ascending order by the next refresh

5

time for this session2.

Usually it would be possible to schedule all reservation and path refreshes for all sessions as single

events in ns (with the \at" command), but that would be a large waste of memory. For this reason,

RSVP/ns only adds the �rst element in the timer list to the scheduler. It is still possible that new

sessions are sorted into the timer list before the already scheduled element at its head, but that is not

very likely.

3.3 RSVP links

The duplex-rsvp-links are based on duplex-intserv-links to which an RSVPChecker object and a WFQ

queue are added. The purpose of the RSVPChecker object is to intercept RSVP packets on the link

and hand them to the RSVP agent on the link's destination node. The interaction between RSVP

agents and RSVPChecker objects is illustrated in �gure 2. To send Path and PathTear messages, the

messages are handed to the RSVPChecker object from which the path message originated which set

up the corresponding path state. The packet header for these messages is changed to make it look as

if the packet came from the previous hop. With this simple \spoo�ng" mechanism, full independence

from the underlying routing protocol is achieved. This is not necessary however with Resv, ResvTear

and ResvErr messages, since they are sent hop by hop from RSVP agent to RSVP agent, using the

PHOP information from the path states, while path messages have to rely on the routing protocol,

since they have to be routed through the same hops as the data packets.

RSVP
Agent

RSVPChecker

Node

Data packets

RSVP packets

Link

Figure 2: An RSVP link

3.4 WFQ

To enforce the bandwidth guarantees, WFQ [Dem89] and WF2Q [Ben96] algorithms have been imple-

mented for ns. For RSVP/ns, the option \best-e�ort" is used, which means that a queue is installed

for all tra�c that the classi�er does not recognize (otherwise, an error message would be returned for

each packet with an unknown
ow id/sender combination). The option \borrow" is also used, which

means that packets which are over-limit for a certain class are put into the best-e�ort queue.

The WFQ queues use their own hash tables to classify the packets to avoid possibly slow upcalls

to Tcl to access the ns hash classi�ers.

4 How to use RSVP/ns

In section 4.1 a short description of the installation procedures necessary for adding RSVP/ns to ns-2

is given. Section 4.2 describes the Tcl commands which are needed for creating simulation scenarios

2That is either the next time for a path refresh or a reservation refresh, whichever is smaller

6

with RSVP/ns.

4.1 Installation

First, the �le \rsvpns.tar.gz" has to be copied into the ns directory (the directory which holds the

source code for ns and the ns binary). The source �les for RSVP/ns are extracted into the ns directory,

the �le \ns-rsvp.tcl" is added to the tcl/lib/ directory and several example scripts (some of which are

described in section 5) are extracted into the directory tcl/ex/rsvp/. The �le \README.RSVP" is

also extracted into the ns directory. It contains information about which ns source �les have to be

edited and which entries have to be added to the Make�le.

Note: To use RSVP/ns, ns version 2.1b3 or higher is needed.

4.2 Tcl commands

This section describes how to use RSVP/ns in simulation scripts, assuming that the reader already

has a basic experience with writing Tcl simulation scripts for ns.

A new link type has been added for RSVP/ns. This link, called \duplex-rsvp-link" is described

in section 4.2.1. Section 4.2.2 describes how to add RSVP agents to nodes. The API commands

for RSVP agents are described in section 4.2.3 and section 4.2.4 lists the API upcalls which can be

triggered by RSVP events. Section 4.2.5 describes how some basic statistical information can be read

from the RSVP agents and RSVP links.

4.2.1 Setting up an RSVP link

An RSVP link between the nodes n1 and n2 is created with the command

ns duplex-rsvp-link <n1> <n2> <bw> <delay> <reservable> <rsvp> <queue> <adc> <est>

where \ns" is an instance of the simulator. The other arguments are:

� bw : The bandwidth for this link

� delay : The link's delay

� reservable : The portion of the link's bandwidth that can be used by RSVP

� rsvp : The bandwidth (in bits per second) which is reserved for RSVP messages

� queue : The size of the queue for the best-e�ort class (in bytes)

� adc : The admission control algorithm

� est : The estimator used by measurement based admission control algorithms

If the \rsvp" argument is set to zero, all RSVP messages will be transmitted as best-e�ort packets.

Otherwise, a WFQ class for RSVP messages with the rate speci�ed by the \rsvp" argument will be

added to the link to avoid RSVP message loss. The simple formula n�s�8=30 (where n is the number

of sessions which are going to traverse a link and s is the expected average message size, usually a value

close to 100 bytes) should yield a good approximation of the necessary bandwidth, though this value

will have to be higher for example if frequent reservation changes occur. The user has to ensure that

the sum of the bandwidth which is reserved for RSVP messages and the reservable bandwidth does

7

not exceed the link's bandwidth (e.g. if 100% of a link's bandwidth are reservable, then no bandwidth

should be reserved for RSVP messages).

Currently it is possible to choose from �ve di�erent admission control algorithms3 [Jam97]:

� Param : A parameter-based \Simple Sum" algorithm

� MS : Measured Sum

� HB : Hoe�ding Bounds

� ACTO : Acceptance Region-Tangent at Origin

� ACTP : Acceptance Region-Tangent at Peak

The most usual choice would be \Param". There are four di�erent estimator modules for the

admission control algorithms:

� Null (for Param)

� TimeWindow (for MS)

� ExpAvg (for HB)

� PointSample (for ACTO and ACTP)

So the command to set up an RSVP link between the nodes a and b with a capacity of 1MBit/s

(half of which should be reservable by RSVP), a delay of 10ms with 100bit/s reserved for RSVP

messages, a queue size of 50000 bytes for the best-e�ort class and parameter-based admission control

would be:

[Simulator instance] duplex-rsvp-link $a $b 1Mb 10ms 0.5 100 50000 Param Null

4.2.2 Creating and setting up RSVP agents

An RSVP agent is added to a node with the command

<node> add-rsvp-agent

This command returns a handle for the agent. The following example adds an RSVP agent to the

node \no" and stores the handle in \rsvpagent":

set rsvpagent [$no add-rsvp-agent]

The handle to a node's RSVP agent is also returned by the following command:

<node> get-rsvp-agent

Table 4 shows the options which can be set for RSVP agents and their default values. All of these

options can either be set for each RSVP agent or globally with \Agent/RSVP set <option> <value>".

3The admission control modules were written by Sandeep Bajaj (formerly Xerox PARC, now Cisco) and Lee Breslau
(Xerox PARC). Some documentation for these modules can be found in the IntServ test suite in the directory tcl/ex/.

8

Option Default value Description

noisy 0 De�nes which events create an upcall to the API (see section 4.2.4)

refresh 30 The refresh value \R" as described in section 3.7 of RFC 2205

lifetime factor 3 The value \K" as described in section 3.7 of RFC 2205

ip6 0 If set to \1", IPv6 message lengths will be simulated

nam 1 If set to \1", all packets will appear in nam with their correct

message types, otherwise all packets are \RSVP" packets

Table 4: Con�gurable options for RSVP agents

4.2.3 API commands

The following commands are de�ned in RSVP/ns (\rsvp-agent" is always a handle for an RSVP agent

that was added to a node):

� Create a session:

<rsvp-agent> session <destination> <flow-id>

The argument \destination" can be either a node id, a node handle or a multicast address. This

call returns an ID for the session which has to be used in all subsequent commands for this

session. A session is created automatically by a path event.

� Release a session:

<rsvp-agent> release <session-id>

A session that was not created by a \session" command is released automatically when no path

states for this session are left.

� Send path messages:

<rsvp-agent> sender <session-id> <rate> <bucket> <ttl>

� Reserve bandwidth:

<rsvp-agent> reserve <session-id> <style> <flow descriptor list>

At the moment, the style can only be 'FF'. The format of the
ow descriptor list is described

below.

� Send a RESV CONFIRM object with the next reservation message:

<rsvp-agent> confirm <session-id>

� Get a list of all sessions in an agent:

<rsvp-agent> sessions

� Set the status value for a session:

9

<rsvp-agent> set-status <session-id> <value>

� Get the status value for a session:

<rsvp-agent> get-status <session-id>

� Assign an object handle to a session:

<rsvp-agent> set-handle <session-id> <object>

� Get the object handle for a session:

<rsvp-agent> get-handle <session-id>

The status value does not actually represent a session's current status. It can be set freely by the

user to any value. However, its purpose is to provide a possibility to keep track of a session's current

status, usually with the help of the upcall functions (see section 4.2.4). For example, the \upcall-resv"

function can be rede�ned to set the value to \1", and the \upcall-resv-tear" function would set it to

\0" again. The object handle for a session has a similar purpose. It gives the user the possibility

to assign an object to a session on an RSVP agent, for example the source object for the
ow that

corresponds to the session.

RSVP sends messages with the
ow ID 46 to enable RSVP links to assign RSVP messages to their

reserved class in the links. There are also some other protocol messages (e.g. Prune messages for

multicast protocols) that are sent with a special
ow ID, so the best way to avoid any problems is to

use high
ow IDs, for example IDs above 1000.

The
ow descriptor list in \reserve" commands is de�ned exactly like the
ow descriptor list for

FF style reservation messages in section 3.1.4 of RFC 2205 by the following BNF:

<flow descriptor list> ::=

<flowspec> <sender> |

<flow descriptor list> <FF flow descriptor>

<FF flow descriptor> ::=

[<flowspec>] <sender>

This means that a (virtually) unlimited number of senders can follow after each
owspec. Senders

can be either node handles or node IDs. Flowspecs are comprised of two numbers, the rate and the

bucket size. To distinguish
owspecs from senders,
owspecs have to begin with a \+". For example,

to reserve 200,000 bits per second with a bucket size of 10,000 bytes for the sender nodes n1 and n2,

and 40,000 bits per second with a bucket size of 5,000 bytes for the sender node n3, the following

command would be used:

$rsvp-agent reserve $session-id FF +200000 10000 $n1 $n2 +40000 5000 $n3

4.2.4 API upcalls

API upcalls are triggered by events, such as path events or reservation events. To determine which

events trigger an upcall, one bit for each possible upcall can be set in the \noisy " byte. Table 5 shows

which bit value in the \noisy " byte corresponds to which upcall and the parameters that are passed

to the upcalls. In RSVP/ns, upcalls can occur on all nodes, not only on end nodes, making it possible

to monitor the events on each node. To globally enable all upcalls on all RSVP agents, the command

10

Value Function header Arguments

1 upcall-path session-id, rate, bucket, sender

2 upcall-resv session-id, rate, bucket, sender

4 upcall-resv-error session-id, error-code, error-value, error-node

8 upcall-resv-confirm session-id, sender, node

16 upcall-path-timeout session-id, sender

32 upcall-path-tear session-id, sender

64 upcall-resv-timeout session-id, sender

128 upcall-resv-tear session-id, sender

Table 5: API upcalls and their bit values in the \noisy " byte

Agent/RSVP set noisy_ 255

can be used at the start of a simulation script.

There are simple prede�ned functions for each possible upcall. However, it is possible to override

these functions by rede�ning them. For example, it would be possible to de�ne an \upcall-path"

function which automatically triggers a reservation for the session.

4.2.5 Statistics

RSVP agents maintain the values \num psb " (the number of path states in the agent), \num rsb "

(the number of reservation states) and \num
ows " (the number of reservations, for distinct reserva-

tion the same as \num rsb "), which can be read from the agent at any time. Additionally, WFQ links

maintain the values \num classes " (the number of WFQ classes), \num
ows " (the number of
ows),

\num drops " (the number of packets from reserved classes which were dropped) and \size drops "

(the sum of the packet sizes of the packets which were counted in \num drops "). The last two values

can be reset to zero with the command \<wfq> clear-stats", where \wfq" is the handle for a WFQ

queue which can be obtained from a link with the command \<link> queue".

5 Validation

In [Jain91], three possible sources for the validation of a simulation model are given:

� Expert intuition

� Real system measurements

� Theoretical results

In this section, expert intuition is used to validate the correctness of RSVP/ns, because no complex

RSVP test bed was available that could have been used for measurements and it would probably take

more time to develop a correct theoretical model for RSVP that could be used for comparisons with

RSVP/ns than it took to implement RSVP/ns.

Several examples will be given in this section to prove for certain special situations that RSVP/ns

functions properly. However, to quote Jain, \a `fully validated model' is a myth", so the scope of

this section is to cover the most important cases for RSVP, but not to fully prove the correctness of

RSVP/ns.

11

1Mbit/s (0.5Mbit/s)

1Mbit/s (0.5Mbit/s)

2

4

30 1

1Mbit/s
(0.5Mbit/s)

1Mbit/s
(0.5Mbit/s)

Figure 3: The topology for the examples in section 5.1

and 5.2

5.1 Merging of reservations

The purpose of this example is to show if RSVP/ns merges reservations correctly. Figure 3 shows the

topology that is used for this example (the reservable bandwidth for each link is set in brackets). Node

0 sends three multicast
ows with a constant bit rate of 0.5Mbit/s to the nodes 2, 3 and 4. These

nodes successively perform increasing reservations and release them again. The following lines were

taken from the simulation script:

$ns at 300.0 "$rsvp2 reserve 0 ff +100000 100000 $n0"

$ns at 600.0 "$rsvp3 reserve 0 ff +300000 100000 $n0"

$ns at 900.0 "$rsvp4 reserve 0 ff +500000 100000 $n0"

$ns at 1200.0 "$rsvp4 release 0"

$ns at 1500.0 "$rsvp3 release 0"

$ns at 1800.0 "$rsvp2 release 0"

The normal behaviour for RSVP would be to merge the reservation requests from the three nodes

and to only forward a reservation for the lowest upper bound. During the simulation, the rate for the

three
ows was measured at one of the receiver nodes4 and �gure 4 shows the results.

It is obvious that at 300 seconds, the received rate for
ow 1 increases. This is caused by the

reservation for 0.1Mbit/s which gives the
ow an advantage over the other
ows. At 600 seconds, the

reservation increases even more, then at 900 seconds it goes up to the
ow's peak rate, to 0.5Mbit/s.

The other reservations request have been merged into the request for 0.5Mbit/s (which represents

the lowest upper bound). The other two
ows share the remaining bandwidth. Without merging, the

request for 0.5Mbit/s would have been rejected, because reservations for 0.1Mbit/s and 0.3Mbit/s were

already in place. When the sessions are released on the receiver nodes, the reservations are removed

correctly which can be seen in the measurements from the decreasing rate for
ow 1.

The result is that at least for this scenario, merging of reservation requests for multicast
ows is

performed correctly by RSVP/ns. The example script can be found in the directory \tcl/ex/rsvp/".

The �lename is \rsvp merge.tcl".

4It does not matter which one of the three nodes is chosen, because the link between node 0 and node 1 is the
bottleneck, and the tra�c downstream from node 1 is basically the same for all receiver nodes

12

0

100000

200000

300000

400000

500000

600000

0 500 1000 1500 2000 2500

bi
t/s

Flow 1
Flow 2
Flow 3

Figure 4: The measurements for the example in 5.1

5.2 Distinct reservations

For this example, the same topology is used as for the merging example. In this case, the nodes 2, 3

and 4 are the senders though. Each of them sends a data
ows with a constant bit rate of 0.5Mbit/s.

All of these
ows are being sent for the same session (i.e. with the same
ow id and the same receiver

node). Now the receiver node 0 performs distinct reservations for the single senders. The following

lines were taken from the simulation script:

$ns at 300.0 "$rsvp0 reserve 0 ff +100000 100000 $n2"

$ns at 600.0 "$rsvp0 reserve 0 ff +500000 100000 $n3"

$ns at 900.0 "$rsvp0 reserve 0 ff +400000 100000 $n3"

$ns at 1200.0 "$rsvp0 reserve 0 ff +100000 100000 $n3"

$ns at 1500.0 "$rsvp0 reserve 0 ff +300000 100000 $n4"

0

100000

200000

300000

400000

500000

600000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

bi
t/s

Sender node 1
Sender node 2
Sender node 3

Figure 5: Measurements for distinct reservations

The normal behaviour for RSVP would be to add all FF reservation requests and to forward the

sum of all
owspecs. This means that the request in the second line would have to be rejected, because

13

1Mbit/s (0.3Mbit/s)

(0.5Mbit/s)
1Mbit/s

1Mbit/s
(0.5Mbit/s)

2

3

0 1

Figure 6: The scenario for the example in section 5.3

a reservation for 0.1Mbit/s is already in place at this point, and only 0.5Mbit/s are reservable on each

link. All other reservation requests should be admitted though.

The received rate for each of the three
ows was measured at node 0. The results are presented

in �gure 5. An obvious e�ect of the reservation at 300 seconds for the
ow from node 2 can be seen.

There is no e�ect at all at 600 seconds (as expected), but the reservation request at 900 seconds

succeeds. At 1200 seconds, the reservation for the
ow from node 3 is reduced to the reservation for

node 2, so both
ows receive the same bandwidth for the rest of the simulation. At 1500 seconds, a

reservation request for node 4 with 0.3Mbit/s succeeds, which also causes a clearly visible e�ect in the

measurements.

The result is that at least for this scenario, distinct reservations for di�erent senders are performed

correctly by RSVP/ns. The example script can be found in the directory \tcl/ex/rsvp/". The �lename

is \rsvp distinct.tcl".

5.3 Con�rmation messages

This section illustrates the possible problem with con�rmation messages which is mentioned in section

2.6 of RFC 2205. Figure 5.3 shows the simple topology which is used for this example. Again, the

reservable bandwidth for each link is set in brackets. Node 0 sends path messages for a multicast session

to the nodes 2 and 3. Node 2 sends a reservation message for a rate of 500kbit/s. This reservation

request is accepted at node 1. However, there is not enough reservable bandwidth on the link from

node 0 to node 1. 0.7 seconds later, before the reservation request from node 2 has reached node 0,

node 3 sends a reservation message with a RESV CONFIRM object. When this message reaches node

1, it is merged with the existing reservation state from node 2, and a con�rmation message is sent

back to node 3. Then, 1.3 seconds later, node 3 receives an error message for the same reservation,

because it could not be established on the link from node 0 to node 1. This is the output for node 3

from the example script.

3 PATH EVENT at 4.002 : SID: 0 RATE: 500000 BUCKET: 5000 SENDER: 0

3 RESVCONF EVENT at 7.702 : SID: 10 SENDER: 0 NODE: 1

3 RESVERROR EVENT at 9.003 : SID: 0 CODE: 1 VALUE: 0 NODE: 0

The example script can be found in the directory \tcl/ex/rsvp/". The �lename is \rsvp conf.tcl".

14

2 Mbit/s

3 Mbit/s

1 Mbit/s

Figure 7: The scenario for the example in section 5.4

5.4 Large simulations

For this section, a \stress test" was performed with RSVP/ns on a topology with 80 nodes. This

topology is depicted in �gure 7. The 5 black nodes in the middle which are connected with 3Mbit/s

links represent the backbone. The grey nodes connect the white end nodes with this backbone.

When the simulation starts, best-e�ort
ows are created from each end node to 15 randomly

selected destination nodes. These
ows are exponential on/o� (Expoo)
ows. This means that bursts

are sent where the burst and idle times are chosen from exponential distributions (with an average of

1s and 0.5s for the burst time and the idle time respectively). The packet sizes are constant during

the lifetime of a
ow, but from
ow to
ow, the size is chosen from an exponential distribution with

the average 500 bytes. The peak rate of all
ows is 64kbit/s. The
ow lifetimes and the waiting times

before a new
ow is spawned after a
ow's lifetime is over are also exponentially distributed with an

average of 200 seconds and 100 seconds respectively. Since each
ow spawns only one successor, the

maximum for the number of best-e�ort
ows that originate from an end node is 15, so the maximum

number of best-e�ort
ows in the whole network is 900.

Each end node also sends up to 4 RSVP
ows. These
ows are sent with a constant bitrate of

64kbit/s. The distributions for the
ow lifetime and all other values are the same as for the best-

e�ort
ows. Before an RSVP
ow is sent, path messages are sent to the receiver, which automatically

triggers a reservation request from the receiver. When the reservation is established, the sender creates

a tra�c source and begins to send. The maximum of RSVP
ows in the whole network is 240, so the

highest number of
ows that can appear in the network at any given time is 1140.

The goal of this scenario is to test the functionality of RSVP/ns in such a large network where the

nodes in the backbone have to maintain a high number of constantly changing path and reservation

15

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900

kb
it/

s

Figure 8: The result of the measurements described in section 5.4

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

Flows in backbone node
Flows in backbone link

Figure 9: The number of
ows in an arbitrarily chosen backbone node and backbone link

states and where the end nodes create a \background noise", both of best-e�ort packets and packets

for reserved tra�c. To achieve this goal, a test
ow with 64kbit/s and a packet size of 100bytes is

sent from one arbitrarily chosen node to another node on the opposite side of the network. At certain

times (from 300s-400s, 500s-600s and 700s-800s), reservations are set up for this
ow. The rate for the

ow is measured by a simple monitor object at the receiver node. The result of these measurements

is shown in picture 8.

Picture 8 clearly shows how the reservations a�ect the
ow and protect it from packet losses,

keeping it constantly at 64kbit/s for the duration of the reservation. Figure 9 shows the number of

ows with reservations in an arbitrarily chosen node in the backbone and an arbitrarily chosen link

in the backbone. It can be seen how the simulation does not reach an entirely stable state before 200

seconds have passed. The fourth measured value in this scenario was the number of dropped packets

for reserved
ows in the same backbone link. This value was constantly zero throughout the whole

simulation.

The example script can be found in the directory \tcl/ex/rsvp/". The �lename is \rsvp large.tcl".

It took about 90 minutes to run this simulation on a Sun Ultra 2 with a 296 Mhz processor.

16

6 Disclaimer

This version of RSVP/ns can be seen as a \snapshot" of an ongoing project. Full correctness of

this version can not be guaranteed and it is the user's own responsibility to verify and validate the

correctness of simulations with RSVP/ns. The user is also expected to read the copyright notice and

disclaimer in the RSVP/ns source �les before using RSVP/ns.

References

[Ben96] J.C.R. Bennett and H. Zhang, \WFQ: Worst-case Fair Weighted Fair Queueing",

INFOCOM 1996, March 1996

[Dem89] Demers, A., Keshav, S., Shenker, S., \Analysis and simulation of a fair queueing algo-

rithm", Proceedings of ACM SIGCOMM 89

[Jain91] Jain, R., \The Art of Computer Systems Performance Analysis", John Wiley & Sons,

1991

[Jam97] Jamin, S., Shenker, S.J., Danzig, P.B., \Comparison of Measurement-based Admission

Control Algorithms for Controlled-Load Service", Proc. IEEE INFOCOM '97, April 97

[NS] Fall, K., Varadhan, K., \ns Notes and Documentation", April 1998,

\http://www-mash.cs.berkeley.edu/ns/nsDoc.ps.gz"

[RFC1633] Braden, R., Clark, D., Shenker, S., \Integrated Services in the Internet Architecture: an

Overview", RFC 1633, June 1994

[RFC2119] Bradner, S., \Key words for use in RFCs to Indicate Requirement Levels", RFC 2119,

March 1997

[RFC2205] Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S., \Resource ReSerVation Protocol

(RSVP) { Version 1 Functional Speci�cation", RFC 2205, September 1997

[RFC2209] Braden, R., Zhang, L., \Resource ReSerVation Protocol (RSVP) { Version 1 Message

Processing Rules", RFC 2209, September 1997

[RFC2210] Wroclawski, J., \The Use of RSVP with IETF Integrated Services", RFC 2210, September

1997

[RFC2211] Wroclawski, J., \Speci�cation of the Controlled-Load Network Element Service",

RFC 2211, September 1997

[VINT] Webpage of the VINT project, \http://netweb.usc.edu/vint/"

17

