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Introduction
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• Instantaneous queue length L(t), L(t) ∈ {0, 1, ...,K}

• Exponentially averaged queue length S(t), d
dtS(t) = −α(S(t)− L(t))

• Poisson arrivals, packet drop probability depends on S(t)

• Exponential service times with parameter µ
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Introduction (continued)

• Motivation for modeling dynamics of exponentially averaged queue

– RED mechanism

– DiffServ architecture: Assured Forwarding PHB

• The model provides information about

– The stationary properties of exponentially averaged queue length (PDF)

– The average packet drop probability

• Results may be utilized to

– Determine the parameters of RED/AF buffers
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Background: Fluid Queues
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• Arriving work is regarded as continuous fluid flow

– Arrival intensity R(t)

– Drain rate c

– The amount of fluid X(t) in the container changes with rate R(t)− c

• Arrival intensity is controlled by Markov process (MMRP)

• Interesting issue: Stationary distribution of X(t)

Cost279/FIT Research Seminar February 12, 2002



AB HELSINKI UNIVERSITY OF TECHNOLOGY Modeling Dynamics of Exponentially Averaged Queue 5

Background: Fluid Queues(continued)
• Assume underlying Markov process is birth-death process Z(t) ∈ {0, 1, ..., N}

• Set R(t) = ri, when Z(t) is in state i,

• Define partial CDF Pi(t, x) = P{X(t) ≤ x, Z(t) = i}

• Consider first how the Pi(t, x) evolves in time

Pi(t + ∆t, x) = λi−1∆tPi−1(t, x− (ri−1 − c)∆t) + µi+1∆tPi+1(t, x− (ri+1 − c)∆t)
+[1− (λi + µi)∆t]Pi(t, x− (ri − c)∆t) +O(∆t2)
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Background: Fluid Queues(continued)

• Taking the limit ∆t→ 0

∂

∂t
Pi(t, x) + (ri − c)

∂

∂x
Pi(t, x) = λi−1Pi−1(t, x) + µi+1Pi+1(t, x)− (λi + µi)Pi(t, x)

•We are interested in the time-independent properties of process X(t):

– Setting ∂
∂tPi(t, x) = 0,

– Denoting Fi(x) = P{X ≤ x, Z = i} (equilibrium probabilities)

(ri − c)
∂

∂x
Fi(x) = λi−1Fi−1(x) + µi+1Fi+1(x)− (λi + µi)Fi(x),∀i ∈ {1, 2, ...N}

• The equations can be expressed in matrix form M d
dxF(x) = AF(x)

• The ODE system is linear, homogenous, constant coefficient system and
it is basically easy to solve.
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Modelling approach for exponentially averaged queue

• Consider now exponentially averaged queue

– Instantaneous queue length follows stochastic process L(t) ∈ {0, 1, 2, ...,K}
– Exponentially averaged queue length S(t), ddtS(t) = −α(S(t)− L(t))

– L(t) is similar to birth-death process

∗ Poisson arrivals, packet drop probability depends on S(t),λ(S(t))

∗ Exponential service times with parameter µ
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• Interesting issue: Stationary distribution of S(t) and L(t)
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Modelling approach for exponentially averaged queue (continued)

• Comparison with fluid queue

Z(t) controls the arrival rate ∼ L(t) describes the instantaneous queue length

amount of work in queueX(t) ∼ exponentially averaged queue lengthS(t)

X(t) changes with rateR(t)− c ∼ S(t) changes with rate− α(S(t)− L(t))

Z(t) independent ofX(t) ∼ L(t) depends onS(t)

• Let’s take modelling approach similar to fluid queues

– Consider a process {S(t), L(t)}
– Define partial CDF Pi(t, s) = P{S(t) ≤ s, L(t) = i},
– and partial PDF pi(t, s) = ∂

∂sPi(t, s)
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Modelling approach for exponentially averaged queue (continued)

• Pi(t, s) evolves in time step ∆t

Pi(t + ∆t, s) =

∫ s+α(s−i)∆t

0

[1− (λi(x) + µi)∆t]pi(t, x)dx

+

∫ s+α(s−(i−1))∆t

0

λi−1(x)∆tpi−1(t, x)dx +

+

∫ s+α(s−(i+1))∆t

0

µi+1∆tpi+1(t, x)dx+O(∆t2)

• Take the limit ∆t→ 0

∂

∂t
Pi(t, s)− α(s− i) ∂

∂s
Pi(t, s) = −

∫ s

0

(λi(x) + µi)pi(t, x)dx

+

∫ s

0

λi−1(x)pi−1(t, x)dx+

∫ s

0

µi+1pi+1(t, x)dx
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Modelling approach for exponentially averaged queue (continued)

• The time-independent properties of process x(t):

– Set ∂
∂t
Pi(t, s) = 0

– Define CDF Fi(s) = P{S ≤ s, L = i} (equilibrium probabilities),

– and PDF fi(s) = d
dsFi(s)

α(s− i)fi(s) =

∫ s

0

(λi(x) + µi)fi(x)dx

−
∫ s

0

λi−1(x)fi−1(x)dx−
∫ s

0

µi+1fi+1(x)dx,∀i

• Assuming that Fi(s) has continuous second derivative ∂
∂sfi(s), we get

α(s− i) ∂
∂s
fi(s) = (λi(s) + µi − α)fi(s)− λi−1(s)fi−1(s)− µi+1fi+1(s), ∀i
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Modelling approach for exponentially averaged queue (continued)

• Thus, we get a system of differential equations

M(s)
d

ds
f(s) = A(s)f(s),

in which
f(s) =

(
f0(s) f1(s) . . . fK(s)

)T

M(s) = α


s 0

s− 1
. . .

0 s−K

 ,A(s) =


λ(s)− α −µ 0

−λ(s) λ(s) + µ− α −µ
. . .

0 −λ(s) µ− α


• Process S(t) will not reach boundaries in finite time
→ boundary conditions: fi(0) = 0, fi(K) = 0, ∀i
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Remarks about solving the model

• How to solve the system M(s) ddxf(s) = A(s)f(s)?

• No direct way to solve the DE system analytically

• Numerical solution with Euler methods is difficult

–M(s) pointwise singular in points s = {0, 1, ...,K}
→ Boundary conditions do not define the solution uniquely
→ System ”infinitely stiff”, rounding errors dominate the solution

• Other approaches

– Solve the PDE equations in discretized time

∗ Any initial PDF will approach infinitely close to the stationary PDF

∗ Embedded chain approach

– Solve the DE system with base function approximations
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Examples with M/M/1/K queue

• Consider M/M/1/K queue

– Arrival intensity λ (independent of S(t))

– Service intensity µ

• Arrival intensity is now constant and the DE system takes form

M(s)
d

ds
f(s) = Af(s)

• In this case we can derive similar DE system for CDFs F(s)

M(s)
d

ds
F(s) = A′F(s),

in which A′ = A− αI
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Examples with M/M/1/K queue (continued)

• Analytical solution is found in case K=1{
αs d

ds
f0(x) = (λ− α)f0(s)− µf1(s)

α(s− 1) ddsf1(s) = (µ− α)f1(s)− λf0(s)

⇒
{
f0(s) = sλ/α−1(1− s)µ/α, s ∈ [0, 1]

f1(s) = sλ/α(1− s)µ/α−1, s ∈ [0, 1]
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Examples with M/M/1/K queue (continued)

• K = 2, solutions found in the special case λ/α = µ/α = 2N + 1, N ∈ N
αs ddsf0(s) = (λ− α)f0(s)− µf1(s)

α(s− 1) ddsf1(s) = (µ+ λ− α)f1(s)− λf0(s)− µf2(s)

α(s− 2) ddsf2(s) = (µ− α)f2(s)− λf1(s)

• Solutions are of the form (The Pi(s) are polynomials of degree 2N )

⇒


f0(s) = sλ/α−1(2− s)µ/α+1P0(s), s ∈ [0, 2]

f1(s) = sλ/α−0(2− s)µ/α−0P1(s), s ∈ [0, 2]

f2(s) = sλ/α+1(2− s)µ/α−1P2(s), s ∈ [0, 2]

• In the special case λ/α = µ/α = 2 solution is also found

– fi(s) are picewise polynomials
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Further work

• Develop more efficient methods for solving PDE/DE system

– Speeding up the convergence of time discretized PDE system

– Embedded chain approach

– Base function approximations for the DE system

• Verify model results with simulation

• Further development of the model

– More complex traffic model (e.g. MMRP)

– Model for two connected queues (AF buffer)
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