

# Modeling Dynamics of Exponentially Averaged Queue

E. Kuumola

Helsinki University of Technology

Networking Laboratory

February 12, 2002



### Outline

- Introduction
- Background: Fluid queues
- Modeling approach for exponentially averaged queue
- Remarks about solving the model
- Examples with M/M/1/K queue
- Further work





- Instantaneous queue length  $L(t), L(t) \in \{0, 1, ..., K\}$
- Exponentially averaged queue length S(t),  $\frac{d}{dt}S(t) = -\alpha(S(t) L(t))$
- Poisson arrivals, packet drop probability depends on S(t)
- $\bullet$  Exponential service times with parameter  $\mu$



#### **Introduction (continued)**

- Motivation for modeling dynamics of exponentially averaged queue
  - RED mechanism
  - DiffServ architecture: Assured Forwarding PHB
- The model provides information about
  - The stationary properties of exponentially averaged queue length (PDF)
  - The average packet drop probability
- Results may be utilized to
  - Determine the parameters of RED/AF buffers



# **Background: Fluid Queues**



- Arriving work is regarded as continuous fluid flow
  - Arrival intensity R(t)
  - Drain rate  $\boldsymbol{c}$
  - The amount of fluid X(t) in the container changes with rate R(t) c
- Arrival intensity is controlled by Markov process (MMRP)
- Interesting issue: Stationary distribution of X(t)

#### **Background: Fluid Queues(continued)**

- Assume underlying Markov process is birth-death process  $Z(t) \in \{0, 1, ..., N\}$
- Set  $R(t) = r_i$ , when Z(t) is in state *i*,
- Define partial CDF  $P_i(t, x) = P\{X(t) \le x, Z(t) = i\}$
- Consider first how the  $P_i(t, x)$  evolves in time

 $P_{i}(t + \Delta t, x) = \lambda_{i-1} \Delta t P_{i-1}(t, x - (r_{i-1} - c)\Delta t) + \mu_{i+1} \Delta t P_{i+1}(t, x - (r_{i+1} - c)\Delta t) + [1 - (\lambda_{i} + \mu_{i})\Delta t] P_{i}(t, x - (r_{i} - c)\Delta t) + O(\Delta t^{2})$ 





## **Background: Fluid Queues(continued)**

• Taking the limit  $\Delta t \rightarrow 0$ 

$$\frac{\partial}{\partial t}P_i(t,x) + (r_i - c)\frac{\partial}{\partial x}P_i(t,x) = \lambda_{i-1}P_{i-1}(t,x) + \mu_{i+1}P_{i+1}(t,x) - (\lambda_i + \mu_i)P_i(t,x)$$

- We are interested in the time-independent properties of process X(t):
  - Setting  $\frac{\partial}{\partial t}P_i(t,x) = 0$ ,
  - Denoting  $F_i(x) = P\{X \le x, Z = i\}$  (equilibrium probabilities)  $(r_i - c)\frac{\partial}{\partial x}F_i(x) = \lambda_{i-1}F_{i-1}(x) + \mu_{i+1}F_{i+1}(x) - (\lambda_i + \mu_i)F_i(x), \forall i \in \{1, 2, ...N\}$
- The equations can be expressed in matrix form  $\mathbf{M} \frac{d}{dx} \mathbf{F}(x) = \mathbf{A} \mathbf{F}(x)$
- The ODE system is linear, homogenous, constant coefficient system and it is basically easy to solve.



# Modelling approach for exponentially averaged queue

- Consider now exponentially averaged queue
  - Instantaneous queue length follows stochastic process  $L(t) \in \{0, 1, 2, ..., K\}$
  - Exponentially averaged queue length  $S(t), \frac{d}{dt}S(t) = -\alpha(S(t) L(t))$
  - -L(t) is similar to birth-death process
    - $\ast$  Poisson arrivals, packet drop probability depends on S(t) ,  $\lambda(S(t))$
    - $\ast$  Exponential service times with parameter  $\mu$



• Interesting issue: Stationary distribution of S(t) and L(t)



Comparison with fluid queue

Z(t) independent of  $X(t) \sim L(t)$  depends on S(t)

- Z(t) controls the arrival rate  $\sim L(t)$  describes the instantaneous queue length amount of work in queue  $X(t) \sim$  exponentially averaged queue length S(t)X(t) changes with rate  $R(t) - c \sim S(t)$  changes with rate  $-\alpha(S(t) - L(t))$
- Let's take modelling approach similar to fluid queues
  - Consider a process  $\{S(t), L(t)\}$
  - Define partial CDF  $P_i(t,s) = P\{S(t) \le s, L(t) = i\},\$
  - and partial PDF  $p_i(t,s) = \frac{\partial}{\partial s} P_i(t,s)$



•  $P_i(t,s)$  evolves in time step  $\Delta t$ 

$$P_{i}(t + \Delta t, s) = \int_{0}^{s + \alpha(s-i)\Delta t} [1 - (\lambda_{i}(x) + \mu_{i})\Delta t]p_{i}(t, x)dx + \int_{0}^{s + \alpha(s-(i-1))\Delta t} \lambda_{i-1}(x)\Delta tp_{i-1}(t, x)dx + \int_{0}^{s + \alpha(s-(i+1))\Delta t} \mu_{i+1}\Delta tp_{i+1}(t, x)dx + O(\Delta t^{2})$$

• Take the limit  $\Delta t \rightarrow 0$ 

$$\frac{\partial}{\partial t}P_i(t,s) - \alpha(s-i)\frac{\partial}{\partial s}P_i(t,s) = -\int_0^s (\lambda_i(x) + \mu_i)p_i(t,x)dx + \int_0^s \lambda_{i-1}(x)p_{i-1}(t,x)dx + \int_0^s \mu_{i+1}p_{i+1}(t,x)dx$$



- The time-independent properties of process x(t):
  - Set  $\frac{\partial}{\partial t}P_i(t,s) = 0$
  - Define CDF  $F_i(s) = P\{S \le s, L = i\}$  (equilibrium probabilities),

- and PDF 
$$f_i(s) = \frac{d}{ds} F_i(s)$$
  
 $\alpha(s-i)f_i(s) = \int_0^s (\lambda_i(x) + \mu_i)f_i(x)dx$   
 $-\int_0^s \lambda_{i-1}(x)f_{i-1}(x)dx - \int_0^s \mu_{i+1}f_{i+1}(x)dx, \forall i$ 

• Assuming that  $F_i(s)$  has continuous second derivative  $\frac{\partial}{\partial s}f_i(s)$ , we get

$$\alpha(s-i)\frac{\partial}{\partial s}f_i(s) = (\lambda_i(s) + \mu_i - \alpha)f_i(s) - \lambda_{i-1}(s)f_{i-1}(s) - \mu_{i+1}f_{i+1}(s), \forall i$$



• Thus, we get a system of differential equations

$$\mathbf{M}(s)\frac{d}{ds}\mathbf{f}(s) = \mathbf{A}(s)\mathbf{f}(s),$$

in which

$$\mathbf{f}(s) = \left( f_0(s) \ f_1(s) \ \dots \ f_K(s) \right)^T$$

$$\mathbf{M}(s) = \alpha \begin{pmatrix} s & 0 \\ s-1 & \\ & \ddots & \\ 0 & s-K \end{pmatrix}, \mathbf{A}(s) = \begin{pmatrix} \lambda(s) - \alpha & -\mu & 0 \\ -\lambda(s) & \lambda(s) + \mu - \alpha & -\mu & \\ & \ddots & \\ 0 & & -\lambda(s) & \mu - \alpha \end{pmatrix}$$

• Process S(t) will not reach boundaries in finite time  $\rightarrow$  boundary conditions:  $f_i(0) = 0$ ,  $f_i(K) = 0$ ,  $\forall i$ 

#### **Remarks about solving the model**

- How to solve the system  $\mathbf{M}(s)\frac{d}{dx}\mathbf{f}(s) = \mathbf{A}(s)\mathbf{f}(s)$ ?
- No direct way to solve the DE system analytically
- Numerical solution with Euler methods is difficult
  - M(s) pointwise singular in points  $s = \{0, 1, ..., K\}$ 
    - $\rightarrow$  Boundary conditions do not define the solution uniquely
    - $\rightarrow$  System "infinitely stiff", rounding errors dominate the solution
- Other approaches
  - Solve the PDE equations in discretized time
    - \* Any initial PDF will approach infinitely close to the stationary PDF
    - \* Embedded chain approach
  - Solve the DE system with base function approximations

# Examples with M/M/1/K queue

- Consider M/M/1/K queue
  - Arrival intensity  $\lambda$  (independent of S(t))
  - Service intensity  $\mu$
- Arrival intensity is now constant and the DE system takes form

$$\mathbf{M}(s)\frac{d}{ds}\mathbf{f}(s) = \mathbf{A}\mathbf{f}(s)$$

• In this case we can derive similar DE system for CDFs  $\mathbf{F}(s)$ 

$$\mathbf{M}(s)\frac{d}{ds}\mathbf{F}(s) = \mathbf{A'F}(s),$$

in which  $A' = A - \alpha I$ 

# Examples with M/M/1/K queue (continued)

0.6

0.4

0.8

1

Analytical solution is found in case K=1

$$\begin{cases} \alpha s \frac{d}{ds} f_0(x) = (\lambda - \alpha) f_0(s) - \mu f_1(s) \\ \alpha(s-1) \frac{d}{ds} f_1(s) = (\mu - \alpha) f_1(s) - \lambda f_0(s) \\ \Rightarrow \begin{cases} f_0(s) = s^{\lambda/\alpha - 1} (1 - s)^{\mu/\alpha}, s \in [0, 1] \\ f_1(s) = s^{\lambda/\alpha} (1 - s)^{\mu/\alpha - 1}, s \in [0, 1] \end{cases}$$

0.2



### Examples with M/M/1/K queue (continued)

• K = 2, solutions found in the special case  $\lambda/\alpha = \mu/\alpha = 2N + 1, N \in \mathbb{N}$ 

$$\begin{cases} \alpha s \frac{d}{ds} f_0(s) = (\lambda - \alpha) f_0(s) - \mu f_1(s) \\ \alpha(s-1) \frac{d}{ds} f_1(s) = (\mu + \lambda - \alpha) f_1(s) - \lambda f_0(s) - \mu f_2(s) \\ \alpha(s-2) \frac{d}{ds} f_2(s) = (\mu - \alpha) f_2(s) - \lambda f_1(s) \end{cases}$$

• Solutions are of the form (The  $P_i(s)$  are polynomials of degree 2N)

$$\Rightarrow \begin{cases} f_0(s) = s^{\lambda/\alpha - 1}(2 - s)^{\mu/\alpha + 1}P_0(s), s \in [0, 2] \\ f_1(s) = s^{\lambda/\alpha - 0}(2 - s)^{\mu/\alpha - 0}P_1(s), s \in [0, 2] \\ f_2(s) = s^{\lambda/\alpha + 1}(2 - s)^{\mu/\alpha - 1}P_2(s), s \in [0, 2] \end{cases}$$

- In the special case  $\lambda/\alpha = \mu/\alpha = 2$  solution is also found
  - $-f_i(s)$  are picewise polynomials

### **Further work**

- Develop more efficient methods for solving PDE/DE system
  - Speeding up the convergence of time discretized PDE system
  - Embedded chain approach
  - Base function approximations for the DE system
- Verify model results with simulation
- Further development of the model
  - More complex traffic model (e.g. MMRP)
  - Model for two connected queues (AF buffer)