On large random graphs of the "Internet type"

Hannu Reittu and Ilkka Norros
VTT Information Technology
\{Hannu.Reittu, Ilkka.Norros\}@vtt.fi

Introduction

'Complexity' of the Internet

- connects various networks with no typical topology
- diversity in link capacity
- rapid growth and change of topology
- it is very large
- new 'killer applications' may appear suddently.
\Rightarrow
Modelling is difficult, a desire for 'invariant' properties.

Few invariants found

- diurnal changes of activity
- self-similarity of the data traffic
- Poisson arrivals of sessions
- log-normal session durations

A new candidate: a power-law topology of the Internet.

M. Faloutsos, P. Faloutsos, and Ch. Faloutsos. On power-law relationships of the Internet topology. ACM SIGCOMM'99 (http://www.cs.ucr.edu/ ~michalis/papers.html pages 251-262, 1999.
Probably helps to understang routing dependent features of the Internet.

Suggested power-laws

Power-Law 1: degree exponent \mathcal{O} The frequency f_{d} of a degree d is proportional to a constant power, $\mathcal{O}: f_{d} \sim d^{\mathcal{O}}$.

Power-Law 2: Rank exponent \mathcal{R} The degree d_{v} of a node v is proportional to the rank of the node r_{v} to a constant power $\mathcal{R}: d_{v} \sim r_{v}^{\mathcal{R}}$. The rank of the node is found as its position in the list of all nodes ordered in the decreasing order of their degrees.

Power-Law 3 ('Approximation') hop-plot exponent \mathcal{H} The total number of pairs of nodes $P(h)$ within h hops is proportional to the number of hops to a constant power $\mathcal{H}: P(h) \sim h^{\mathcal{H}}, h \ll \delta$, the diameter.

Power-Law 4: eigen exponent Υ The eigenvalues λ_{i} of a graph are proportional to the order i to a constant power $\Upsilon: \lambda_{i} \sim i^{\Upsilon}$.

The model of Newman, Strogatz and Watts

M.E.J. Newman, S.H. Strogatz, and D.J. Watts. Random graphs with arbitary degree distribution and their applications. http://arXiv.org/list/condmat/0007?200, pages 1-18, 2000.

Internet \approx a random graph:
N number of nodes in the graph
D_{1}, \ldots, D_{N} i.i.d. random variables, $\in\{1,2, \ldots\}$.

$$
\mathbb{P}(D=d) \sim \text { const } \cdot d^{-\tau}
$$

measurements suggest $\tau \in(2,3)$, we take

$$
\mathbb{P}(D \geq d)=d^{-\tau+1}, \quad d=1,2, \ldots
$$

Large graphs: let $N \rightarrow \infty$

$$
\mathrm{N}=2
$$

$$
\mathrm{D}_{1}=4
$$

$$
\mathrm{D}_{2}=3
$$

One realization:

Distance in a power-law graph with $2<\tau<3$

τ-dependent graphs 'phases':
Distance \mathcal{L} ?

$P(l) \sim m^{l} \Rightarrow, \mathcal{L} \sim \log (N), 2<\tau<3, \Rightarrow m=\infty$
Newman et al. "exclude large degrees" then m is finite...

Our claim: 'large' nodes are important.

Basic notions

$A=A^{(N)}$ happens asymptotically almost surely (a.a.s.), if

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(A^{(N)}\right)=1
$$

Lemma 4.1 For any $\eta>0$,

$$
\sum_{i=1}^{N} D_{i} \in[(\mathbb{E}\{D\}-\eta) N,(\mathbb{E}\{D\}+\eta) N] \quad \text { a.a.s. }
$$

Lemma 4.2 Let $\phi, \psi: \mathbb{N} \rightarrow \mathbb{R}$ be functions such that $\phi \rightarrow \infty, \psi \rightarrow \infty$, and that there exists a limit

$$
\lim _{N \rightarrow \infty} \frac{\psi(N)}{\phi(N)}=a \in[0, \infty]
$$

Then

$$
\lim _{N \rightarrow \infty}\left(1-\frac{1}{\phi(N)}\right)^{\psi(N)}=e^{-a} \in[0,1]
$$

Helps to reveal '0 or 1-laws'.
Lemma 4.3 Let U and V be two disjoint sets of nodes

$$
F=\sum_{i \in U} D_{i}, \quad G=\sum_{j \in V} D_{j}
$$

If $F G / N \rightarrow \infty$ a.a.s., then a node from U is directly connected to a node in V a.a.s.
$\operatorname{Fix} \ell: \mathbb{N} \rightarrow \mathbb{R}$ s.t.

$$
\frac{\ell(N)}{\log \log N}=o(N), \quad \text { as } N \rightarrow \infty
$$

A "small number" is

$$
\epsilon(N)=\frac{\ell(N)}{\log N}
$$

Note:

$$
\begin{equation*}
\epsilon(N) \rightarrow 0, \quad N^{\epsilon(N)} \rightarrow \infty \quad \text { as } N \rightarrow \infty \tag{4.1}
\end{equation*}
$$

Conjecture. The random graph considered above has a giant component (with size proportional to N). Two randomly chosen nodes of the giant component are a.a.s. connected with at most $4 k^{*}$ steps.

The sketch of proof

1. step

Find the first neighbours of the largest node.

$$
i^{*} \doteq \operatorname{argmax}_{i \in\{1, \ldots, N\}} D_{i}
$$

The maximum degree $D_{i^{*}}$ is about $N^{\frac{1}{\tau-1}}$. Note that $1 /(\tau-1)>1 / 2$.

Proposition 4.4 We have

$$
D_{i^{*}} \in\left[N^{\alpha_{1}}, N^{\alpha_{1}+2 \epsilon(N)}\right] \quad \text { a.a.s. }
$$

where

$$
\alpha_{1}=\alpha_{1}(N)=\frac{1}{\tau-1}-\epsilon(N)
$$

Nodes

$$
U_{1}=\left\{i: D_{i} \geq N^{\beta_{1}+\epsilon(N)}\right\}, \quad j=1,2, \ldots
$$

are a.a.s. among first neighbours and $\beta_{1}=1-\alpha_{1}$

$$
D_{i^{*}}^{(1)}=\sum_{i \in U_{1}} D_{i}
$$

2.step $D_{i^{*}}^{(1)}$ replaces $D_{i^{*}}$. We have analogously $\beta_{2}=(\tau-2) \beta_{1}<\beta_{1}$. And so on:
k.step

$$
\beta_{1}=1-\alpha_{1}=\frac{\tau-2}{\tau-1}+\epsilon(N)
$$

$$
\begin{aligned}
\beta_{2} & =(\tau-2) \beta_{1}+\epsilon(N) \\
& \ldots \\
\beta_{k} & =(\tau-2) \beta_{k-1}+\epsilon(N)=\frac{(\tau-2)^{k}}{\tau-1}+\epsilon(N) \sum_{i=0}^{k-1}(\tau-2)^{i}
\end{aligned}
$$

and

$$
U_{j}=\left\{i: D_{i} \geq N^{\beta_{j}+\epsilon(N)}\right\}, \quad j=1,2, \ldots
$$

are within k-hops from i^{*}. $\beta_{k} \rightarrow \epsilon(N) /(3-\tau)>0$.
Define the 'core' as:

$$
\begin{equation*}
C=\left\{i: D_{i} \geq N^{2 \epsilon(N) /(3-\tau)}\right\} \tag{4.2}
\end{equation*}
$$

Proposition 4.5 Let k^{*} denote the number

$$
k^{*}=1+\left\lceil\frac{\log \log N+\log (3-\tau)}{-\log (\tau-2)}\right\rceil .
$$

Then $C \subseteq U_{k^{*}}$. In particular, the nodes of C have at least $\frac{1}{2} N^{1-2 \epsilon(N) /(3-\tau)}$ link stubs a.a.s.

final steps

Take two random nodes, connect them to the core with less than k^{*} steps. Possible if: a random node i has its neibourghood $V_{i}(j(N))$ within $j(N)$ hops $j(N) \rightarrow \infty, j(N) \leq k^{*}(N)$ and environment grows at least exponentially with number of hops.
$\left|V_{i}(j(N))\right| \geq \mu^{j(N)}$ a.a.s. for some $\mu>1$

$$
\frac{\left|V_{i}\left(k^{*}(N)\right)\right| N^{1-2 \epsilon(N) /(3-\tau)}}{N} \geq \mu^{k^{*}(N)} e^{2 l(N) /(3-\tau)} \rightarrow \infty
$$

To be proved: the whole path exists a.a.s. and number of cycles is insignificant a.a.s.

Conclusions

- shown that a "core network" arises spontaneously from the distributional assumptions alone
- one-step connections between layers of the core, and many auxiliary results needed for that, are shown (we hope!) rigorously
- the remaining steps to prove the Conjecture in full are indicated
- properties of this kind of graphs have already been used in studies on denial of service attacs [] and multicast []; we hope that our results will turn out useful in that kind of studies

