
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2005 Jörg Ott 1

Introduction to Network
Programming

Assignment 1: udpspy

Slides partly prepared by Olaf Bergmann (Uni Bremen TZI)

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

Starting Point
IDE

Unix/Linux available in the department
Alternative: cygwin (winsock vs. BSD)

Information sources
Today’s slides and exercise
Details on the web page
man, info, Google
Send mail (if everything else has failed)

GNU gcc, make, ...

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

The Goals
Workable software

Remember that you will need to build upon this later
Compiled and tested on the department workstations (Unix/Linux)
Learning: how to get there
Functionality: to actually arrive at a working solution

Documentation
Inline
Shows that you understood the problem and the solutions
Helps you to remember what you were thinking today in two months from now
Helps us to understand what you meant to do
→ There should be no “wrong” solutions (only malfunctioning ones)

Working with development tools
make, gcc, gdb, cvs, autoconf, ...

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

Program Structure
Start

End

Init

ProcessSummary

Wait

INT?

N

Y

Main loop
Manage socket descriptors (there will be many)
Read data
Create output
Signal and failure handling

Cleanup
Close all descriptors
Leave multicast groups (if any)
Free memory

Initialization
Parse the command line & arguments
Resolve hostname
Bind sockets, join multicast groups (if any)
Manage signal handling

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

Parse Command Line
int getopt(cnt,argv,optstring)

int oc;
while((oc=getopt(argc,argv,"a:hi:sl:D:t:")) != EOF)
{

switch(oc) {
case 'a' : addAddress(optarg); break;
case 'h' : usage(); exit(0);
case 'i' : addInterface(optarg); break;
case 's' : summary = true; break;
case 'l' : dumplen = strtol(optarg,NULL,10); break;
case 't' : controlAddress(optarg); break;
case 'D' : duration = strtol(optarg,NULL,10); break;
default :

opterr(oc);
}

}

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

Resolve hostname

Transform a symbolic name into a protocol-specific address
Attention: different address formats and lengths

APIs
gethost*(), inet_aton(), inet_ntoa()
getaddrinfo(), inet_pton(), inet_ntop()

old

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

The Old Stuff

gethostname (char *name_buffer, int buffer_length)
struct hostent *gethostbyname (char *namestr)
struct hostent *gethostbyaddr (struct sockaddr *, size_t, int);

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

#define h_addr h_addrlist [0]
};

struct hostent *gethostent ();
endhostent ();

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

8

getaddrinfo

int getaddrinfo(host,server,hints,result)

struct addrinfo {
int ai_flags; /* AI_PASSIVE, AI_CANONNAME,

AI_NUMERICHOST */
int ai_family; /* PF_UNSPEC */
int ai_socktype; /* SOCK_xxx */
int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
size_t ai_addrlen; /* length of ai_addr */
char *ai_canonname; /* canonical name for nodename */
struct sockaddr *ai_addr; /* binary address */
struct addrinfo *ai_next; /* next structure in linked list */

};

void freeaddrinfo(struct addrinfo *res);
const char *gai_strerror(int errcode);

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

9

Conversion functions (1)

Dotted decimal notation: aaa.bbb.ccc.ddd (IPv4 only)
in_addr_t inet_addr (char *buffer)
in_addr_t inet_aton (char *buffer)
char *inet_ntoa (in_addr_t ipaddr)

aaa.bbb.ccc.ddd (IPv4), aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh (IPv6)
int inet_pton(int af, const char *src, void *dst)
dst: in_addr or in6_addr

const char *inet_ntop(int af, const void *src, char *dst, size_t)
src: in_addr bzw. in6_addr
char dst[INET_ADDRSTRLEN] bzw. char dst[INET6_ADDRSTRLEN]

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

10

Conversion Functions (2)

Network vs. Host Byte Order
All data in the network is sent as “Big Endian”
Conversion into local representation required (Intel)

(depends on the CPU architecture but should always be done
for portability)

netshort = htons (hostshort)
netlong = htonl (hostlong)
hostshort = ntohs (netshort)
hostlong = ntohl (netlong)

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

11

BSD Socket Interface

The BSD mechanism for Inter-Process Communication (IPC)
Transparency between local and remote communications
Socket Descriptor: feels like file i/o or stdin/stdout

Support for different address families (some 30 in socket.h)
(Named) Pipes (z.B. AF_UNIX), ...
Internet Protocols (AF_INET, AF_INET6)
Other

Crucial for the spreading of IP in the 1980s!
Supports different types of communications, u.a.

SOCK_STREAM: TCP SOCK_DGRAM: UDP
SOCK_RAW: Raw IP SOCK_PACKET: Link-Layer-Frames

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

12

Socket Creation

int socket(domain,type,proto)
int bind(sd,addr,addrlen)

int createSocket(const sockaddr_in &addr)
{

int sd=socket(PF_INET,SOCK_DGRAM,0);
if (sd<0) return -1;

int yes = 1;
setsockopt(sd, SOL_SOCKET, SO_REUSEADDR, (char*)&yes, sizeof yes);
fcntl(sd,F_SETFL,O_NONBLOCK);
if (bind(sd,reinterpret_cast<const sockaddr *>(&addr),sizeof addr)<0) {

std::cerr << strerror(errno) << std::endl;
return -1;

}
return sd;

}

Socket domain
PF_INET, PF_INET6

Socket type
SOCK_STREAM, SOCK_DGRAM, …

Protocol
0 (any), 6 (tcp), 17 (udp)

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

13

Address Structures

Identification of a peer by means of IP address, port number,
and protocol

struct sockaddr_in {
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;

};

IPv4-Adresse (historisch motiviert umständlich)
struct in_addr {

in_addr_t s_addr;
};

struct sockaddr_in6 {
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;

};

IPv6-Adresse (hier verkürzt dargestellt)
struct in6_addr {

uint8_t u6_addr8[16];
#define s6_addr in6_u.u6_addr8
};

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

14

Passive Waiting

Data reception (UDP), accepting incoming connections (TCP)

bind (int sd, struct sockaddr *, socklen_t len);

UDP: done

TCP: enable connection setup from others
listen (int sd, in backlog);

Permits <backlog> pending connection setup requests in the kernel

setsockopt () and ioctl () to set further parameters
Buffer size, Type-of-Service, TTL, multicast addresses, ...

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

15

Connections (TCP)
connect (int sd, struct sockaddr *target, socklen_t len);

Creates (synchronously) a connection
Function call only complete when the connection is established, if a timeout
occurs without response (may be several minutes), or when ICMP error
messages indicate failure (e.g., destination unreachable)
Option: TCP_NODELAY for asynchronous connection setup

Accepting an incoming connection (cannot reject anyway ☺)
new_sd = accept (int sd, struct sockaddr *peer, socklen_t *peerlen);

Creates a new socket descriptor for the new connection
The original one (sd) continues to be used for accepting further connections

Closing a connection
shutdown (int sd, int mode)

0: no further sending, 1: no further reception, 2: neither sending nor receiving
close(sd) to clean up – beware of data loss!

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

16

Sending Data
Connection-oriented (TCP)

write (int sd, char *buffer, size_t length);
writev (int sd, struct iovec *vector, int count);

List of buffers, each with pointer to memory and length
send (int sd, char *buffer, size_t length, int flags)

May be used for out-of-band data

Connectionless (UDP)
sendto (int sd, char *buffer, size_t length, int flags,

struct sockaddr *target, socklen_t addrlen)
sendmsg (int sd, struct msghdr *msg, int flags)

Target address
Pointer to the memory containing the data
Control information

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

17

Receiving Data
Connection-oriented (TCP)

read (int sd, char *buffer, size_t length);
readv (int sd, struct iovec *vector, int count);

List of buffers, each with pointer to memory and length
recv (int sd, char *buffer, size_t length, int flags)

May be used for out-of-band data

Connectionless (UDP)
recvfrom (int sd, char *buffer, size_t length, int flags,

struct sockaddr *target, socklen_t addrlen)
recvmsg (int sd, struct msghdr *msg, int flags)

Sender address
Pointer to the data
Control information

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

18

Further Functions
getpeername (int sd, struct sockaddr *peer, size_t *len)

Obtain the address of the communicating peer
getsockname (int sd, struct sockaddr *local, size_t *len)

Obtain the address of the local socket (e.g., if dynamically assigned)

Modify socket parameters
getsockopt (int sd, int level, int option_id, char *value, size_t length)
setsockopt (int sd, int level, int option_id, char *value, size_t length)

Examples:
Buffer size, TTL, Type-of-Service, TCP-Keepalive, SO_LINGER, ...

ioctl (int sd, int request, ...);
fcntl (int sd, int cmd [, long arg] [, ...]);

Non-blocking I/O

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

19

Multicast reception
Multicast JOIN
setsockopt (sd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
struct ip_mreq *mreq, sizeof (ip_mreq));

struct ip_mreq {
struct in_addr imr_multiaddr; /* IP multicast address of
group */
struct in_addr imr_interface; /* local IP address of
interface */

};

Multicast-LEAVE
setsockopt (sd, IPPROTO_IP, IP_DROP_MEMBERSHIP, struct
ip_mreq *mreq, sizeof (ip_mreq));

Optional: Allow repeated use of an address (needed for multicasting)
char one = 1;
setsockopt (sd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof
(char))

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

20

I/O Multiplexing (select)

Calculate file descriptor sets (FDSET)
Determine earliest timeout
Call select()
Error?

Fatal → Terminate
Repairable (e.g. interrupted system call) → repeat

Timeout?
Timer handling; use struct timeval { … } to specify (sec, usec) pair
NULL pointer == blocking (no timeout), (0, 0) == polling

Success
Determine active file descriptors and handle events

int select(maxfdset,read,write,ext,timer)

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

21

fd_set Makros

fd_set wfdset;
FD_ZERO (&wfdset);
FD_SET (fd, &wfdset);
.
.
.

if (FD_ISSET(fd, &wfdset))
. . .

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

22

I/O Multiplexing (poll)

struct pollfd {
int fd; // file descriptor
int events; // events to watch for
int revents; // occurred events

};
Poll events:

POLLIN input pending
POLLOUT socket writable (only needed with non-blocking i/o)
POLLHUP, POLLERR

Timeout is specified in milliseconds
-1 == no timeout, 0 == return immediately (perform real polling)

Handling otherwise identical to select()

int poll(pollfd,n_fd,timeout)

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

23

udpspy

Receives UDP packets from a specified transport address (command line)
Works for unicast and multicast addresses (IPv4, optionally IPv6)
Virtually “any number” of addresses
Short and long form for showing data packets
If a control connections is present, dump the data to this connection (do
not worry about the connection being too slow at this point)
Terminating the program with Ctrl-C (SIGINT) will cause it to dump a
summary of the packets received so far.
Alternatively, a time period can be specified on the command line

Test mode: Program sends data provided by the user to a specified
transport address (to talk to your own client)
Test sender pc27: 226.226.226.226/62226, one packet per second
containing some 120 bytes of text and binary data, and a sequence
number (both in text and binary)

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

24

udpspy -a <addr-spec> -i <if-addr> -s -l <dumplen> -t <addr-spec>
-D <duration>

-a: transport address to receive data on; uses the following format
<IPv4 address>/port
/port
<IPv6 address>/port
<hostname>/port

May be specified repeatedly.
-i: address of the local interface to use for listening to multicast packets
-s: packet reports in short form: one line per packet:

reception timestamp (µs!), sender, receiver address, packet size
If “-s” is not specified, the long form is implied. In this case, the above
line is followed by a hexdump of (parts of) each packet received:
000000 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx

-l: Number of bytes to include in the hexdump
-t: transport address to accept TCP connections to dump packets on
-D: duration to run (in seconds)

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

25

Hints (1)
Transport address(es) to receive data on

socket (SOCK_DGRAM, AF_INET, …)
Address type (unicast or multicast) can easily be determined from the class

For multicast, bind() to the proper port number with INADDR_ANY
Then, use setsockopt () with IP_ADD_MEMBERSHIP for the multicast and i/f address
If no i/f address was specified, just use INADDR_ANY

You MUST create and bind an individual UDP socket for every address
Otherwise, you cannot determine the destination of the packet later on

You need to parse the address arguments “by hand”
Remember host vs. network byte order

Single line format, e.g.:
14:09:00.123456 134.102.218.59:40000 -> 134.102.218.58:47000 79 Bytes

Remember again network vs. host byte order

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

26

Hints (2)
Accepting a TCP connection to dump to

Use another listening socket socket (SOCK_STREAM, AF_INET, …)
accept () incoming connections

If there is more than one, distribute the data to all of them

A poll()/select() READ event and a subsequent read() result of “0” or “-1”
indicate that the peer is gone.

Try this out, this varies between different operating systems
Close the socket locally
If none are left, revert to dumping to the screen (or no dumping at all)

For this assignment, use all sockets in blocking mode (default setting)
Using non-blocking i/o will make things far too complicated and cause extra headache
But would, nevertheless, be the right thing to do in practice

Test with telnet(1)
telnet 127.0.0.1 50000 if your process listens on port #50000

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

27

Hints (3)
Time handling

gettimeofday(2) yield detailed system clock reading as (sec, usec) pair
If you work with timeout, calculate its absolute time
In the mainloop, determine the time to wait based upon the current time

This result is what you feed into poll() or select()
Note that both use completely different time formats

If poll()/select() returns 0, a timeout has occurred

DO NOT USE SIGNALS FOR TIMING
Such as done by alarm()
This may just cause system call interruptions that you do not want or need
Better to stay in control all the time

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

28

Hints (4)
Signals

Need to catch at least SIGINT: signal (SIGINT, signalhandler);
This may occur at any point in time, so you may want to postpone processing to the main
loop (probably not needed in our simple example)
In this case, you would just set a global variable and return (terminate = 1;)
Need to check the variable regularly even if no packets arrive

Will cause interrupted system calls (errno == EINTR)
Need to check for this also in your main loop and behave accordingly

Short note on hexdumps()
printf (“%x02x”, variable) prints the contents as 2 hex digits with leading
zero
Exception: if the the highest bit is “1”, then leading “ffffff” may appear.
Solution: use (variable & 0x0ff) for printing (you care about 8 bits only)

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

29

Hints (5)
/* command line processing goes here */

if ((s = socket (AF_INET, SOCK_STREAM, 0)) == -1) {
perror ("cannot create socket");
exit (-1);

}
listen_addr.sin_family = AF_INET;
listen_addr.sin_addr.s_addr = INADDR_ANY;
listen_addr.sin_port = htons (listen_port);
if (bind (s, (struct sockaddr *) &listen_addr,

sizeof (listen_addr)) == -1) {
perror ("cannot bind to address");
exit (-1);

}
i_addrlen = sizeof (i_addr);

if (listen (s, 3) == -1) {
perror ("listen failed");
exit (-1);

}

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

30

Hints (6)
n_fd = 1;
fds [0].fd = s;
fds [0].events = POLLIN;
fds [0].revents= 0;

for (;;) {

for (i = 0; i < n_fd; i++)
fds [i].events = POLLIN;

switch (poll (fds, n_fd, 600000)) {
case -1:

perror ("poll failed");
sleep (1);
break;

case 0:
fprintf (stderr, "Timeout...\n");
break;

default:
for (i = 0; i < n_fd; i++) {

if (fds [i].revents & POLLIN) {
if (i == 0) {

/* process events on socket fds [i].fd */
}

}}}

