
HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

© 2005 Jörg Ott 1

Assignment 3: udp2sip

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

2

udp2sip
Receives UDP packets from a specified transport address (command line)
Works for unicast and multicast addresses (IPv4, optionally IPv6)
Virtually “any number” of addresses (typically 1 or 2)
Option: Short and long form for dumping data packets to stdout or file

Short output: include SSRC, RTP payload type, timestamp, seq-no, and M bit
Terminating the program with Ctrl-C (SIGINT) will cause it to dump a summary of the
packets received so far.

Count missing packets from gaps in RTP sequence number space

Accept RTSP-based control connection and forward the data packets to a media client

Accept a SIP-based TCP control connection and forward the data packets to a SIP soft
client (or SIP phone)
Support most trivial SIP interactions for a single run

Incoming: INVITE, ACK, BYE (possibly OPTIONS)
Generate: 200 OK or appropriate error code
Negotiate codecs and transport address using SDP in a single offer/answer exchange

Terminate when the dialog terminates

Do NOT REGISTER; just accept SIP calls to your IP address for any user

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

3

udp2rtsp -a <addr-spec-audio> -v <addr-spec-video> -i <if-addr> -s
-l <dumplen> -f <output-file> -r <addr-spec> -S <sip-addr>
-a, -v: transport address to receive data on; uses the following format

<IPv4 address>/rtp-port[-rtcp-port][/pt]
/port[-rtcp-port][/pt]
<IPv6 address>/port[-rtcp-port][/pt]
<hostname>/port[rtcp-port][/pt]

May each be specified only once.
-i: address of the local interface to use for listening to multicast packets
-s: packet reports in short form: one line per packet:

reception timestamp (µs!), sender, receiver address, packet size
If “-s” is not specified, the long form is implied. In this case, the above
line is followed by a hexdump of (parts of) each packet received:
000000 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx

-l: Number of bytes to include in the hexdump
-r, -S: transport address to accept RTSP or SIP connections, respectively
-f: name of the output file to dump to (“-” -> stdout); if not given, be silent

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

4

udp2sip -a 226.2.2.6/49000-49001/0
-i 10.33.54.27 -s -f audio.rtpdump -S /55554

udp2sip

226.2.2.6/49000

226.2.2.6/49001

SIP
soft client

or
SIP phone

0.0.0.0/55554

Packet forwarding
RTP

RTCP

SIP: INVITE – 200 OK – ACK

BYE – 200 OK

10.33.54.27/50000

10.33.54.27/50001

A1/p1

A2/p2

file:audio.rtpdump

User command:
sip:xyz@10.33.54.27

User command:
sip:xyz@10.33.54.27

SDPOffer/Answer

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

5

Media Stream Control
SIP is used to

Invoke and terminate the media replay
Negotiate media stream parameters and addresses (carry offer/answer)

SDP is used to describe the media stream
Carried in RTSP 200 OK message in response to DESCRIBE

Sample Answer from udp2sip

v=0\r\n
s=-\r\n
o=jo 2345.. 2345.. IN IP4 10.33.54.27\r\n
t=0 0\r\n
c=IN IP4 10.33.54.27\r\n
m=audio 50000 RTP/AVP 0\r\n

Sample Offer from SIP UA

v=0\r\n
s=-\r\n
o=jo 1234.. 1234.. IN IP4 <A1>\r\n
t=0 0\r\n
c=IN IP4 <A1>\r\n
m=audio <p1> RTP/AVP 0 8 3 4 8 18\r\n

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

6

What you need to do…
Add SIP-specific handling to your process

Re-use the message parsing where possible
Just do the SIP processing elsewhere (minimal state machine)
Add small SDP parser
Add offer/answer logic
Feed the negotiation result into your packet forwarding engine
Simplifying assumptions allowed for the state machine: there will be only one call

SIP handling
100 Trying, 200 OK, 4xx responses as appropriate
Remember Via: header processing, branch parameter, and To: tag
Minimal number of headers (as required by RFC 3261) should do
Beyond that: ignore what you don’t understand (client must live with it)

Again: some experimentation may be required to get it right
Need to use a SIP client that speaks TCP (some don’t)

© 2005 Jörg Ott

HELSINKI UNIVERSITY OF TECHNOLOGY
NETWORKING LABORATORY

7

Approach: Similar to RTSP
Add an empty container function for SIP handling
Make your message parser usable for SIP

Write SIP code separately
Test this stand-alone
To get the SIP interaction right you don’t need media streams

Finally integrate and test

Test media streams:
will try provide copyright-free streams or tools to create them

